
1 Related Work 1

1 Related Work

1.1 Laser Beam

Laser Beam is an adaptation of the Lightning Network for the Mimblewimble protocol, to be
implemented for Beam ([1, 2, 3]). At the time of writing of this report the specifications were
far advanced, but still work in progress. Beam has a working demonstration in their mainnet
repository, which at this stage demonstrates off-chain transactions in a single channel between
two parties [4]. According to the Request for Comment (RFC) documents, they do not plan
to support multiparty (more than two) payment channels, but rather implement routing across
different payment channels in the Lightning Network style.

Their version of a multisig is actually a 2-of-2 multi-party UTXO, where each party keep their
share of the blinding factor of the Pedersen commitment, C(v, k1+k2) = (vH+(k1+k2)G), secret.
(Refer to Appendix A: Notation Used). The multi-party commitment is accompanied by a
single multi-party Bulletproof range proof1, where the individual shares of the blinding factor
are used to create the combined range proof [5].

Funding transaction: The parties collaborate to create the multi-party UTXO (i.e. commit-
ment and associated multi-party range proof), combined funding transaction (on-chain) and an
initial refund transaction for each party (off-chain). All refund transactions have a relative time
lock in its kernel, referencing the kernel of the original combined funding transaction, which
have to be confirmed on the blockchain.

The initial funding transaction between Alice and Bob is depicted in (1) to (2). The capitalized
use of R and P in (2) denote public nonce and public blinding factor respectively, f is the fee
and X is the excess. The lock height h0 corresponds to the current blockchain height.

−Inputs.0AB + MultiSig.0 + fee = X0T 1 (1)
− (vaH + kaT 1G)− (vbH + kbT 1G) + (v0H + (k0a + k0b

) G) + fH = X0T 1

Challenge: e0T 1 = H (RNA0 + RNB0 ‖ PNA0 + PNB0 ‖ f ‖ h0) (2)

Alice and Bob also need to set up their own respective refund transaction so they can be com-
pensated should the channel never be used; this is done via a refund procedure. A refund
procedure (off-chain) consists of 4 parts, whereby each user creates 2 transactions, one kept
partially secret and the other shared. Each partially secret transaction creates a different inter-
mediate multiparty UTXO, which are then used as input in two shared transactions, to pay the
same set of outputs to each participant.

All consecutive refund procedures works in exactly the same manner. The Nth refund procedure
is shown below.

Refund procedure part 1 - Alice: Alice and Bob set up Alice’s intermediate multisig funding
transaction, spending the original funding multisig UTXO. The lock height hN corresponds to
the current blockchain height. Alice does not share the kernel and thereby keeps her part of the
final aggregated signature hidden.

1 This is not an aggregated Bulletproof range proof.



1 Related Work 2

−MultiSig.0 + MultiSig.NA + fee = XNA1 (3)

− (v0H + (k0a + k0b
) G) +

(
v0H +

(
k̂Na + kNb

)
G

)
+ fH = XNA1

Challenge: eNA1 = H (RNAA1 + RNAB1 ‖ PNAA1 + PNAB1 ‖ f ‖ hN ) (4)

Secret: sNAA1 = rNAA1 + eNA1 ·
(
k0a + k̂Na

)
(5)

Shared: sNAB1 = rNAB1 + eNA1 · (k0b
+ kNb

) (6)
Signature tuple: (sNAA1 + sNAB1 , RNAA1 + RNAB1) (7)

Kernel of this transaction, kept secret: KNA1 (8)

Refund procedure part 2 - Alice: Alice and Bob set up a refund transaction, which Alice
controls, with a relative time lock hrel to the intermediate funding transaction’s kernel. She
shares the final kernel with Bob.

−MultiSig.NA + Outputs.N + fee = XNA2 (9)

−
(
v0H +

(
k̂Na + kNb

)
G

)
+ (vaN H + kaN G) + (vbN

H + kbN
G) + fH = XNA2

Challenge: eNA2 = H (RNAA2 + RNAB2 ‖ PNAA2 + PNAB2 ‖ f ‖ H (KNA1) ‖ hrel) (10)

Refund procedure part 1 - Bob: Alice and Bob set up Bob’s intermediate multisig funding
transaction, also spending the original funding multisig UTXO. The lock height hN again cor-
responds to the current blockchain height. Bob does not share the kernel and thereby keeps his
part of the final aggregated signature hidden.

−MultiSig.0 + MultiSig.NB + fee = XNB1 (11)

− (v0H + (k0a + k0b
) G) +

(
v0H +

(
kNa + k̂Nb

)
G

)
+ fH = XNB1

Challenge: eNB1 = H (RNBA1 + RNBB1 ‖ PNBA1 + PNBB1 ‖ f ‖ hN ) (12)
Shared: sNBA1 = rNBA1 + eNB1 · (k0a + kNa) (13)

Secret: sNBB1 = rNBB1 + eNA1 ·
(
k0b

+ k̂Nb

)
(14)

Signature tuple: (sNBA1 + sNBB1 , RNBA1 + RNBB1) (15)
Kernel of this transaction, kept secret: KNB1 (16)

Refund procedure part 2 - Bob: Alice and Bob set up a refund transaction, which Alice
controls, with a relative time lock hrel to the intermediate funding transaction. She shares the
final kernel with Bob.

−MultiSig.NB + Outputs.N + fee = XNB2 (17)

−
(
v0H +

(
kNa + k̂Nb

)
G

)
+ (vaN H + kaN G) + (vbN

H + kbN
G) + fH = XNB2

Challenge: eNB2 = H (RNBA2 + RNBB2 ‖ PNBA2 + PNBB2 ‖ f ‖ H (KNB1) ‖ hrel) (18)

Revoke previous refund: Whenever the individual balances in the channel changes, a new
refund procedure are negotiated, revoking previous agreements. Revoking refund transactions



2 Appendices 3

involve revealing blinding factor shares for the intermediate multi-party UTXOs, thereby nullify-
ing its further use. After the four parts of the refund procedure have been concluded successfully,
the previous round’s blinding factor shares k̂(N−1) are revealed to each other (in an atomic fash-
ion), in order to revoke the previous agreement.

MultiSig. (N − 1)A :
(
v0H +

(
k̂(N−1)a

+ k(N−1)b

)
G

)
{Alice’s commitment} (19)

k̂(N−1)a
:{Alice shares with Bob}

MultiSig. (N − 1)B :
(
v0H +

(
k(N−1)a

+ k̂(N−1)b

)
G

)
{Bob’s commitment} (20)

k̂(N−1)b
:{Bob shares with Alice}

Although each party will now have their counterparty’s blinding factor share in the counter-
party’s intermediate multiparty UTXO, they will still not be able to spend it, because the
transaction kernel is still kept secret by the counterparty.

Punishment transaction: If a counterparty decides to broadcast a revoked set of refund
transactions, and the honest party are actively monitoring the blockchain and able to detect
the attempted foul play, a punishment transaction can immediately be constructed before the
relative time lock hrel expires. Whenever the counterparty’s MultiSig. (N − 1) becomes available
in the blockchain, the honest party can spend all the funds to their own output, because they
know the total blinding factor.

Channel closure: Whenever the parties agree to a channel closure, the original on-chain
multi-party UTXO is spend to their respective outputs in a collaborative transaction. In case a
single party decides to close the channel unilaterally due to whatever reason, their latest refund
transaction is broadcasted, effectively closing the channel.

Opening a channel requires one collaborative funding transaction on the blockchain. Closing a
channel involves for each party to broadcast their respective portion of the refund transaction to
the blockchain, or collaborate to broadcast a single settlement transaction. A round trip open
channel, multiple off-chain spending and close channel thus involves at most three on-chain
transactions.

2 Appendices

Appendix A: Notation Used

• Let p be a large prime number.

• Let Zp denote the ring of integers modulo p .

• Let Fp be the group of elliptic curve points.

• Let G ∈ Fp be a random generator point (base point) and let H ∈ Fp be specially chosen
so that the value xH to satisfy H = xHG cannot be found except if the Elliptic Curve
Discrete Logarithm Problem (ECDLP) is solved.

• Let commitment to value v ∈ Zp be determined by calculating C(v, k) = (vH +kG), which
is called the Elliptic Curve Pedersen Commitment (Pedersen Commitment), with k ∈ Zp

(the blinding factor) a random value.

• Let scalar multiplication be depicted by "·", e.g. e · (vH + kG) = e · vH + e · kG.



2 Appendices 4

References

[1] The Beam Team, GitHub: "Lightning Network · BeamMW/beam Wiki"" [online]. Available:
https://github.com/BeamMW/beam/wiki/Lightning-Network. Date accessed: July 5, 2019

[2] F. Jahr, "Beam - Lightning network position paper. (v 1.0)" [online]. Available: ht-
tps://docs.beam.mw/Beam_lightning_network_position_paper.pdf. Date accessed: July 4,
2019.

[3] F. Jahr, GitHub: "fjahr/lightning-mw, Lightning Network Specifications" [online]. Available:
https://github.com/fjahr/lightning-mw. Date accessed: July 4, 2019.

[4] The Beam Team, GitHub: “beam/node/laser_beam_demo
at master · BeamMW/beam” [online]. Available: ht-
tps://github.com/BeamMW/beam/tree/master/node/laser_beam_demo. Date accessed:
July 5, 2019.

[5] The Beam Team, GitHub: “beam/ecc_bulletproof.cpp
at mainnet · BeamMW/beam” [online]. Available: ht-
tps://github.com/BeamMW/beam/blob/mainnet/core/ecc_bulletproof.cpp. Date accessed:
July 5, 2019.


