
BeamHash III Short-Specification
Wilke Trei

March 28, 2020

1 Definition of a Solution and Naming
A valid BeamHash III solution is computed in six rounds with the first round being a seeding
phase in which the algorithm is pseudo-randomly initialized using an element index and a global
nonce nonce.

The elements created and processed during the rounds are called step rows. Each step row is
composed of two sub-elements the work bits and an index tree. The index tree is tracking the
way of its step rows through the rounds of the algorithm and has similar properties to the ones
known from the Equihash 144/5 algorithm, namely

1. Each entry of the index tree needs to be unique.
2. Two index trees that are output round i can only be combined to a new element in round

i+ 1 if the 24 least significant work bits of the two corresponding step rows are equal, i.e.
xor to zero. In round 5 this applies to the lowest 48 work bits.

3. When two index trees get combined in a round to make a new step row, the one with the
lowest entry is set first in memory.

This properties make the output of a new index tree that is combined from two parent trees
of a previous round unique. The final solution to a BeamHash III problem is the index tree that
is result of a combination in the 5th and last round. Hereby the seeding phase is considered to
be round 0.

What distinguishes BeamHash III from Equihash is the generation of the initial step rows and
the algorithm to derive new work bits from the combination of previous ones. This is described
in the following paragraphs.

2 Seeding Phase
A typical BeamHash III work send by a solo node or a pool is given by a 32 byte (256 bit)
pre-work that is a hash of the block header to mine on. To create an individual work to mine on
the 32 byte pre-work is concatenated by a 16 byte (128 bit) nonce. We define the 32 byte output
of

IndividualWork = Blake2B (pre− work | nonce)

to be the input for the BeamHash III seeding phase. Hereby the Blake2B is the standard
implementation with ”BeamHash” as personalization string in the initialization of Blake2B. The
individual work is now input to the 0th round of the algorithm.

In this round of the algorithm in total 225 initial step rows are generated. The index tree of
each of this step rows only consists of its individual 25 bit index. Beside the index each step row
has 448 initial work bits that are generated in seven chunks of 64 bits like follows.

WorkBits [i · 64 .. ((i+ 1) · 64)− 1] = SipHash24 (IndividualWork, (index ≪ 3) + i)

1



3 Combination Phase
Before each combination phase the lowest 64 bits of each step row will be replaced in a mixing
step. For this a serialization of the step row is created, i.e. its current index tree is concatenated
to the its remaining work bits. The result will be padded with zeros or truncated to 512 bits. So
the input of the mixing steps are 512 bit that also can be read as eight 64bit unsigned integers
we will denote by si.

Then the mixing step is given as

WorkBits [0..63] =

(
7∑

i=0

si ≪ (29 · (i+ 1) (mod 64))

)
≪ 24.

The sums in this formula use 64 bit modular arithmetic. The ≪ character stands for the 64
bit left rotate function.

After the mixing step a combination step is applied. Let A and B be two step rows with
completed mixing step that satisfy

WorkBitsA [0..23] = WorkBitsB [0..23]

then a new output step row C for the next round is created. This has a new working bit set
given by

WorkBitsC [0..n] = WorkBitsA [24..n+ 23]⊗WorkBitsB [24..n+ 23]

where the number n of left bits varies with the round following the following table. The index
tree of C is composed by concatenating the two of A and B in the right order following the rules
in the definition section.

Round Left work bits Index Tree Size
0 448 25
1 424 50
2 400 100
3 376 200
4 288 400
5 0 800

Note that intentionally in round 4 we drop the most significant left work bits and reduce to a size
of 288 bits for remaining work bits that get involved into the mixing for round 5. This encourages
implementations that do the mixing step of the next round before writing out the results of the
current round. Thus at the end of round 3 - after round 4 mixing - the most significant 64 work
bits can be dropped to make the total output of the round fit an ulong8 (512 bit) vector.

A solution to the problem defined by the pre-work and nonce will then be any resulting 800 bit
index tree that was result to round 5 and satisfies the initially meant conditions on valid index
trees.

4 Beam Hash III Solution Format and Implementation Details
Independent of the proof of work itself the following details are mandatory to know to create a
valid beam block header using the new Beam Hash III PoW.

Originally Beam uses a 8 byte (64 bit) nonce and a solution size of 32 · 26bit = 832bits =
104bytes. This general format is unchanged for Beam Hash III. Beam Hash III has a total
solution size of 32 · 25bits = 800bits = 100bytes when packed ideally. Therefore we define the
4 most significant bytes of a Beam Hash III solution to be the extra nonce of a Beam Hash
III solution. The extra nonce bytes can freely be chosen by the miner to extend the range of
available nonces.

2



The 4 bytes of extra nonce are part of the solution when submitting a solution, so a Beam
node and all Beam pools expect to receive a 8 byte nonce and a 104 byte solution as before,
while the actual sizes are a 12 byte nonce and a 100 bytes solution.

That said, the extra nonce is as well part of the difficulty calculation - since it is part of the 104
solution bytes - but it also will be appended to the input of the blake2b part of the algorithm,
so the solution depends on the extra nonce bytes.

Concretely the blake2b input is a message of length 32 bytes for the work from node, 8 bytes
nonce and 4 bytes extra nonce, so 44 bytes total in the mentioned order.

3


