
Mimblewimble

Originally published on 2016-07-19 by Tom Elvis Jedusor



Incredibly powerful protocol

• Built-in anonymity
• Transactions are confidential

• No addresses, public identities, or etc.

• Obfuscated transaction graph
• Several challenges however yet to be solved to guarantee this

• Great scalability
• No high CPU/memory demand, mobile/embedded-friendly

• Modest transaction size

• Transaction cut-through

• Despite its versatility, it’s formulated entirely in terms of “elementary” ECC
• No complex constructs like bilinear pairing, zk-SNARK, or etc.

• No trusted setup needed

• Relies solely on the hardness of the discrete logarithm problem



What’s different in MW

• No addresses
• Each UTXO has a secret key, and it belongs to whoever knows it

• Transaction
• No scripts in the blockchain
• To build a valid transaction entities must collaborate.

• i.e. it’s an interactive process
• This is where complex schemes may be negotiated (a.k.a. scriptless scripts)

• Once built, the transaction is obscured, and basically only proves that:
• No illegal inflation, i.e. money created from nothing
• Authorization verification. In order to build a valid transaction the secret keys of all the 

input UTXOs must have been used.
• This is the meaning of ownership – ability to spend it.



UTXO encoding
• Two generator points: G,H (for starters).

• Must be “nothing-up-my-sleeve“ – i.e. their relation must not be known. A 
brief generating scheme must be specified (such as hashing strings).

• 𝐶 = α ∙ 𝐺 + 𝑣 ∙ 𝐻
• α- blinding factor, a uniform (pseudo)random.

• 𝑣 - Value

• Pedersen Commitment (linear combination of those generators).
• Hiding: the value of 𝑣 is blinded

• Binding: impossible to substitute other values for α, 𝑣.

• Homomorphic: 𝐶 α1, 𝑣1 + 𝐶 α2, 𝑣2 = 𝐶(α1 + α2, 𝑣1 + 𝑣2)



Naïve transaction

Alice owns an UTXO containing 𝑣𝐴, wants to send Bob 𝑣𝐵, and receive a change 𝑣𝐴-𝑣𝐵. This 
is their transaction:

• 𝐶 α𝐴, 𝑣𝐴 → 𝐶 α𝐴 − α𝐴`, 𝑣𝐵 + 𝐶 α𝐴`, 𝑣𝐴 − 𝑣𝐵
The verifier checks:

• ∑ 𝐼𝑛𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠 = ∑ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠

Is it a good scheme? Of course no.

• Illegal inflation verification – FAILED.
• no verification that 𝑣𝐴 ≥ 𝑣𝐵, output UTXO may contain “negative” (overflown) value.

• Authorization verification – FAILED.
• Anyone can spend UTXO without the knowledge of its opening (the blinding factor and the value):

• 𝐶 ? , ? → 𝐶 α, 𝑣 + 𝐶 ?−α, ?−𝑣
(The second transaction output is a “fake” UTXO, its opening is unknown.)



Rangeproof
• A zero-knowledge non-interactive proof that proves that the value of the UTXO is within a limited 

range.

• Practically for a 256-bit ECC the value of the UTXO is restricted to 64 bits, which is both a fairly 
large number to encode the value, and far enough from the overflow risk when large number of 
UTXOs are summed.

• In addition to restricting the value of the UTXO, it can also be seen as a cryptographic signature, 
which is impossible to create (with non-negligible probability) unless the opening of the UTXO is 
known.
• Prevents “tampering” with existing UTXO (adding/removing value or blinding factor).
• Prevents creation of “fake” UTXOs with unknown opening.

• MW relies on Bulletproofs
• Pretty sophisticated, yet implemented in terms of “elementary” ECC.
• Dramatically smaller than other similar schemes (but not on par with zk-SNARK of course).

• 64-bit rangeproof in terms of 256-bit ECC is encoded with 674 bytes.

• Supports multi-signature (would require 3 iteration cycles).
• Modest CPU load
• Seems to be feasible to implement on embedded devices (HW wallets)
• Verification is faster than signing
• Multiple verification (like verifying a block) is speeded-up.



Another attempt

• 𝐶 α𝐴, 𝑣𝐴 → 𝐶 α𝐴 − α𝐴`, 𝑣𝐵 + 𝐶 α𝐴`, 𝑣𝐴 − 𝑣𝐵
• Rangeproofs are attached to all the outputs

The verifier checks:

• ∑ 𝐼𝑛𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠 = ∑ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠

• Rangeproofs for all the outputs are valid

Still not good enough:

• Authorization verification – FAILED.
• Such a transaction is reversible
• Alice knows the opening of Bob’s UTXO, hence she can spend it any moment without Bob’s permission.

• No ownership transfer

• This is inherent property of transactions which sum to zero, regardless to how many outputs there are.
• Means, if Bob creates several outputs to receive 𝑣2, Alice still knows their overall value and the total blinding factor, and can 

spend them all at-once.



Transactions with excess

• 𝐶 α𝐴, 𝑣𝐴 → 𝐶 α𝐵, 𝑣𝐵 + 𝐶 α𝐴`, 𝑣𝐴 − 𝑣𝐵 + Δα ∙ 𝐺

• Bob picks a random α𝐵, and it’s unknown to Alice

• Δα = (α𝐴−α𝐴`) + (0 − α𝐵)

The Δα ∙ 𝐺 is the transaction excess. It must be signed (Schnorr’s signature), which proves that:
• It only contains the blinding factor, no Value is hidden
• The creator(s) of the excess must know the transaction excess (Δα).

How the transaction is negotiated

• In a simple scenario Alice reveals α𝐴 − α𝐴` to Bob, and he completes the transaction

• In an advanced scenario – no one reveals blinding factors. Instead Alice and Bob co-sing the transacton excess (Schnorr’s multi-
signature)

The verifier checks:

• ∑ 𝐼𝑛𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠 = ∑ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠 + ∑(𝐸𝑥𝑐𝑒𝑠𝑠𝑒𝑠)

• Rangeproofs for all the outputs are valid

• Excess(es) are properly signed



Is this is a robust system? Are there unnoticed 
pitfalls?
• Illegal inflation verification.

• Based on the homomorphic property of Pedersen Commitments

• Rangeproofs prevent overflow attacks

• Excesses are signed to prove (in particular) no money is hidden in the excess.

• Authorization verification.
• All the transaction elements (UTXOs and excesses) are signed, to prevent 

tampering and creation of unknown objects.

• Outputs are known – means inputs must be known as well.

• Irreversibility of a transaction is due to the fact that excess may only be 
created in a transaction, and never spent.



Transaction kernel

• Contains the excess and additional validation rules and parameters
• Public excess Δα ∙ 𝐺
• Optional fields (timelock parameters, transaction fee, hashlock preimage, etc.)
• Schnorr’s signature.

• Signs all the kernel contents (to prevent tampering)
• The public key is assumed to be Δα ∙ 𝐺.
• The private key is naturally Δα.

• Unlike UTXOs kernels can only be created, and never spent
• This has an impact on the system scalability (dead weight accumulated).
• Since they’re guaranteed to stay - they may be used in various ways:

• Prove the fact of the transaction: It’s built collectively by all the transaction parties, and 
cannot be crafted/modified otherwise.

• Implicitly reveal secret data to the transaction parties upon successful payment (private keys, 
hash preimages)

• Flag transactions for 3rd party (more about this later)



Block

• Merged transactions is also a valid transaction

• Block is essentially one big transaction with many inputs and outputs.

• All the transaction elements (inputs, outputs, kernels) are sorted to obscure the 
original transaction graph

Is the transaction graph truly obscured? Well, No.

• Transactions are mixed, but not “dissolved”

• All the elements are blinded and signed – means it’s impossible to combine them 
non-interactively

• Trying different combinations it’s still feasible to puzzle out the original 
transactions.



Transaction Offset
• 𝐶 α𝐴, 𝑣𝐴 → 𝐶 α𝐵 , 𝑣𝐵 + 𝐶 α𝐴`, 𝑣𝐴 − 𝑣𝐵 + Kernel(Δα` ∙ 𝐺) + β

• Whereas α𝐴 = α𝐴` + α𝐵 + Δα` + β
• Means – the transaction excess Δα is split into 2 parts

• Δα` - goes into kernel (as before)

• β - just revealed unencoded (scalar).

The verifier checks:

• ∑ 𝐼𝑛𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠 = ∑ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑈𝑇𝑋𝑂𝑠 + ∑ 𝐸𝑥𝑐𝑒𝑠𝑠𝑒𝑠 + β ∙ 𝐺

There is finally a transaction element, which can be merged (simply summed)!

• Doesn’t break the robustness of the system, since offset – is a preimage. It can’t conceal money or compensate for unknown 
blinding factors.

• Once the transactions are combined, their offsets are merged, and this is irreversible.
• It’s not possible anymore to split a combined transaction into independent components.

• Block contains multiple inputs, outputs, and kernels (sorted in an unambiguous way), and a single offset

• Transaction graph is now truly obscured (almost…)



Transaction cut-through

• Block is a big transaction
• Multiple blocks can be merged as well, to create one big transaction
• Output UTXOs that are created and then spent can be removed completely

• Means – combined blocks tend to be smaller 

• The whole blockchain can be combined into a single huge block, with only 
outputs that are unspent yet.
• Dramatic scalability improvement
• Some information is lost (obviously). But it’s still possible to verify that the combined 

block describes a valid system transformation according to the rules.

• Each original block header contains a commitment to the kernels (only).
• It’s sufficient to prove the authenticity of the compressed blockchain, after 

redundant inputs/outputs were removed
• Means – all the original transactions were included



Transaction broadcast

• Obscured Transaction graph is of critical importance

• Naïve broadcast scheme immediate reveals the transaction graph!
• A single malicious node immediately gets all the original transactions

• Known solutions
• CoinSchuffle, ValueSchuffle

• Seems promising, but maybe cumbersome in practice
• Requires large group of unrelated users to collaborate
• DoS attack is easy
• Attacker may create many malicious users “for free”

• Dandelion(++)
• Was designed to conceal the identity, regardless to the transaction graph

• A simple solution, which may be practically good enough
• Modified Dandelion, with partial transaction merge during the stem phase.
• No hassles for the users (actually transparent, may complement CoinSchuffle and etc.).
• No guarantee of expected behavior, but non-conforming Nodes can be identified
• Disadvantage: easy to abuse the transaction fee.



Transaction Negotiation

• Secure channel with authentication is a must

• P2P – ok, but
• Requires users to be online simultaneously
• Cumbersome in some networks (NAT & friends)
• Identities can be traced by traffic analyzers

• Secure BBS system
• Separate from the blockchain, but may use the same network addresses
• Solves network configuration hassles
• Asynchronous communication
• Messaging via “addresses”

• May be (and usually are) temporary for one-time usage
• Have nothing to do with the blockchain

• E2E encryption, To/From addresses are not leaked
• For obfuscation: many unrelated negotiators exchange messages over the same channel

• Every user receives all the channel messages, but is able decrypt only the intended ones



Extensions
• Non-interactive payments

• Allows to receive payments non-interactively (without the need for negotiation)
• Supports fixed values only (and their combinations)
• Needs 2 kernels for such a transaction
• Requires Kernel Fusion, to prevent separation of the transaction into its donor and acceptor parts.
• Requires proper handling of multiple identical UTXOs (implemented)

• Auditable Wallet
• Applicable for business, obliged to operate w.r.t. regulations
• As transparent as possible to appropriate authorities
• Preserve the anonymity to others
• Disclose only the required information, without compromising other parties
• Allow the auditor to fully reconstruct the transaction graph of this wallet

• Confidential assets
• Very straightforward to implement in the context of MW

• Just add more H-generators and tweak the bulletproofs!

• What’s unclear yet:
• How the emission of other assets should be regulated?



Thank you

• For more information please visit our project sites:
• https://github.com/BeamMW/beam/wiki

• https://www.beam-mw.com/

https://github.com/BeamMW/beam/wiki
https://www.beam-mw.com/

