
SmartDec

Beam Security Analysis

This report is public.

Published: June 23, 2020

Blockchain Security Analysis

https://smartdec.com

 1

SmartDec

Abstract... 3

Disclaimer ... 3

Summary .. 3

General recommendations .. 3

Procedure ... 4

Project overview .. 5

Project description ... 5

Project architecture.. 5

Automated analysis ... 6

Test coverage analysis .. 6

Coverage Stats .. 7

Conclusion ... 7

Manual analysis of implementation ... 8

Lelantus protocol implementation analysis .. 8

Algorithm outline .. 8

Lelantus analysis ... 9

Sigma implementation review .. 12

Shield.cpp review ... 18

Manual Security Analysis .. 20

Critical issues .. 20

Medium severity issues ... 20

Low severity issues ... 20

Zeroing objects .. 20

Use of volatile .. 21

Return value ignored .. 21

Struct BigFloat inside struct Difficulty ... 22

Inefficient use of file descriptors ... 22

Inefficient code ... 22

Surrogate scoped enums ... 22

Custom offsetof implementation ... 23

Thread joining in destructors .. 23

Suboptimal implementation for arbitrary-precision arithmetics 23

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 2

SmartDec

Off-by-one error ... 24

Missing integer overflow check .. 24

Undefined behavior in functions from <cctype> ... 25

Insecure SECURE_ERASE_OBJ .. 25

List of references ... 26

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 3

SmartDec

Abstract

In this report, we consider the implementation of Lelantus protocol for Beam blockchain

project. Our task is to check if the implementation of the protocol conforms to the

specification and if the implementation is secure.

The security of the protocol itself is out of the audit scope.

Disclaimer

The audit does not give any warranties on the security of the code. One audit cannot be

considered enough. We always recommend proceeding with several independent audits and

a public bug bounty program to ensure the security of the code. Besides, security audit is not

an investment advice.

Summary

In this report, we considered the implementation of Lelantus protocol. We performed our

audit according to the procedure described below.

The audit showed that the implementation of the protocol conforms to the specification.

Also, several issues of low severity were found in the code. None of them endanger the

project's security.

The developer provided the comments for these issues as well as for some details of the

implementation. We placed them in the report.

General recommendations

The low severity issues found in the report do not endanger the project's security. However,

we recommend fixing them to avoid problems in the future versions of code.

https://smartdec.com/
https://github.com/BeamMW/beam
https://lelantus.io/lelantus.pdf
https://beam.mw/

Blockchain Security Analysis

https://smartdec.com

 4

SmartDec

Procedure

In our audit, we consider the following crucial features of the code:

1. Whether the implementation of the protocol conforms to the specification.

2. Whether the code is secure.

3. Whether the code meets best coding practices.

We perform our audit according to the following procedure:

• automated analysis

o we scan project's code base with SmartDec Scanner

o we manually verify (reject or confirm) all the issues found by tools

o we run tests and check their coverage

• manual audit

o we inspect the code and revert the initial algorithms of the protocol and then

compare them with the specification

o we manually analyze the code for security vulnerabilities

o we assess overall project structure and quality

• report

o we reflect all the gathered information in the report

https://smartdec.com/
https://smartdecscanner.com/

Blockchain Security Analysis

https://smartdec.com

 5

SmartDec

Project overview

Project description

In our analysis, we consider Lelantus protocol specification and Beam project’s code on Git

repository, commit 33334578bb879044281b83c88ac09de142211fe8.

Project architecture

For the audit, we were provided with a git repository. The project has tests and specification.

The scope of the audit included:

• lelantus.cpp/lelantus.h (complete)

• shield.cpp (complete)

• ecc_native.h, ecc.h (partial)

• ecc.cpp (partial)

o void MultiMac::Calculate(Point::Native& res) const 1435

o void SignatureBase::SignRaw(const Config& cfg, const

Hash::Value& msg, Scalar* pK, const Scalar::Native* pSk,

Scalar::Native* pRes) const 2343

o void SignatureBase::Sign(const Config& cfg, const

Hash::Value& msg, Scalar* pK, const Scalar::Native* pSk,

Scalar::Native* pRes) 2336

o void SignatureBase::CreateNonces(const Config& cfg, const

Hash::Value& msg, const Scalar::Native* pSk,

Scalar::Native* pRes) 2314

o void SignatureBase::SetNoncePub(const Config& cfg, const

Scalar::Native* pNonce) 2304

• eccbulletproof.cpp (partial)

o void InnerProduct::BatchContext::AddCasual(const

Point::Native& pt, const Scalar::Native& k, bool

bPremultiplied /* = false */) 68

o void InnerProduct::BatchContext::AddPrepared(uint32_t i,

const Scalar::Native& k) 88

o void InnerProduct::BatchContext::AddPreparedM(uint32_t i,

const Scalar::Native& k) 93

https://smartdec.com/
https://lelantus.io/lelantus.pdf
https://beam.mw/
https://github.com/BeamMW/beam/tree/33334578bb879044281b83c88ac09de142211fe8
https://github.com/BeamMW/beam

Blockchain Security Analysis

https://smartdec.com

 6

SmartDec

Automated analysis

The code base was scanned by a program static analysis tool by specifying the URL.

The tool analyzed 1 354 659 lines of code and detected 8 critical and 616 medium level

vulnerabilities. All of them were either false positives, or referred the test code, or 3rd-party

libraries.

The generated report is not included here as it contains no findings.

Test coverage analysis

All operations were performed on the commit

33334578bb879044281b83c88ac09de142211fe8.

To compute test coverage, compilation flags -fprofile-arcs -ftest-coverage were

added to the root CMakeLists.txt file, as well as the linker flag -lgcov. Then the project

was compiled with the Debug profile, after which the tests were run using make test.

During compilation, .gcno files with information about the blocks and the structure of the

source code were automatically generated. During tests execution, .gcda files with

information about the actual execution of specific lines, blocks and functions were

automatically generated.

At the end, gcov was called on the list of all the .gcno and .gcda files. The output of gcov

was converted using regular expressions to a csv table with information about the amount of

code covered by tests in the Beam sources. In addition to the summary data, we get the test

coverage stats for each line in source code files

Full sequence of commands for obtaining test coverage data:

git checkout 3333457

vim CMakeLists.txt # Changing the CMakeLists.txt

git diff CMakeLists.txt

diff --git a/CMakeLists.txt b/CMakeLists.txt

index 72d1523..8b300c8 100644

--- a/CMakeLists.txt

+++ b/CMakeLists.txt

@@ -280,6 +280,8 @@ else()

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-unused-const-variable")

so what?

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-unused-function") #

mostly in 3rd-party libs

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-unused-value") #

proto.h

+ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-

coverage")

+ set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -lgcov")

https://smartdec.com/
https://github.com/BeamMW/beam

Blockchain Security Analysis

https://smartdec.com

 7

SmartDec

endif()

if(BEAM_HW_WALLET)

cmake .

make -j4

make test

mkdir ../cov-res

fd -aiI '.*\.gcno' > ../cov-res/gcno-list.txt

fd -aiI '.*\.gcda' > ../cov-res/gcda-list.txt

cd ../cov-res

cat gcno-list.txt gcda-list.txt | \

 xargs gcov -rmps /home/morgan/SmartDec/MWC/beam-cov > gcov-pct.txt

vim gcov-pct.txt # Converting from gcov output format to .csv

Coverage Stats

File type Total executable LoC Coverage

All files 62598 72.10%

All except 3rdparty 50544 79.74%

All except 3rdparty and tests 35524 76.25%

Lelantus and lelantus tests 1529 81.88%

Lelantus only 916 94.10%

Conclusion

Tests coverage is sufficient.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 8

SmartDec

Manual analysis of implementation

Here we check whether the implementation of the Lelantus protocol conforms to the

specification.

Lelantus protocol implementation analysis

This section contains a detailed review of the implementation of Lelantus in the source code.

Here, with red color we denoted the lines that seem to deviate from the specification.

Algorithm outline

Taken from https://github.com/BeamMW/beam/wiki/Beam-signature-schemes

oracle <-- Sigma parameters (n,M)

oracle <-- Commitment

oracle <-- SpendPk

oracle <-- N’ (public nonce of the Schnorr’s multi-signature)

oracle --> Challenge for Commitment

oracle --> Challenge for SpendPk

<-- Schnorr’s multi-signature: kG, kH

oracle <-- Sigma protocol part 1 (A, B, C, D, G-vector) lines 758 - 763 in lelantus.cpp

count these values and the analysis will be below.

oracle --> Challenge for Sigma protocol - line 702, file lelantus.cpp

<-- Sigma protocol part 2 (a, c, r, f-vector) - lines 704 - 739, file lelantus.cpp

https://smartdec.com/
https://lelantus.io/lelantus.pdf
https://github.com/BeamMW/beam/wiki/Beam-signature-schemes

Blockchain Security Analysis

https://smartdec.com

 9

SmartDec

Lelantus analysis

Comparison of symbols

• m_Witness.V.m_SpendSk – private key (kmw in the documentation). It is also the secret

key for generating SpendPk.

• m_Witness.V.m_R_Adj, m_Witness.V.m_R_Output – these are two private keys that form

kout. The difference between them is that the H* generator is hidden for confidential
assets in the following way H′ = k1 · G + H*. This means that

Cout = kout · G + v · H' = kout · G + v · (k1 · G + H*) = (kout + v · k1) · G + v · H*.
In other words, if H* is hidden, i.e. phGen is set (in the source), then

m_Witness.V.m_R_Adj = (kout is used as the secret key for the G generator + v · k1),

otherwise m_Witness.V.m_R_Output = kout. But the most important thing is that both
keys will be called sk later in the code, meaning that this is the key that is multiplied
by the G generator in the cout commitment.

• m_Proof.m_SpendPk = G · kmw. In other words, it is generated from the sender’s secret
key to generate a serial number.

• phGen – this H′ = k1 · G + v · H* or this H*.

• Scalar::Native kSer – serial number, calculated using m_Proof.m_SpendPk and

oracle.

• ptBias = Cout + J · s = G · sk + H* · v + J · s = G · (kout + v · k1) + H* · v + J · s.

• m_Witness.V.m_V – hidden value v.

• m_Proof.m_Commitment – this is Cout.

• m_Witness.V.m_R – this is (ks + kmw).

• m_NoncePub – this is R = G · skrand + H′ · vrand.

Code review

Reference: Schnor’s signature [1].

1. bool Proof::IsValid(InnerProduct::BatchContext& bc, Oracle&

oracle, Scalar::Native* pKs, const Point::Native* pHGen) const

core/lelantus.cpp, lines 789-842

To check the signature, check the equality of guhv = RCx.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 10

SmartDec

In our case, it should be like this:

G · m_Signature.m_pK[0] + H′ · m_Signature.m_pK[1] + R + Cout · x1 + SpendPk · x2 == 0,

where R = [R = m_Signature.m_NoncePub] = G · skrand + H′ · vrand, Cout = sk · G + v · H′,

m_Signature.m_pK[0] = −skrand − sk · x1 − SpendSk · x2,

m_Signature.m_pK[1] = −vrand − v · x1, where x1 and x2 are challenges.

818 – adds SpendPk · x2.

820 – adds G · m_Signature.m_pK[0].

822-826 – adds H′ · m_Signature.m_pK[1].

827 – adds R.

831-834 – Sigma verification.

835 – adds 𝐶𝑜𝑢𝑡 · (𝑘𝐵𝑖𝑎𝑠 + 𝑥1) · ∑ 𝑐𝑖
𝑁−1
𝑖=0 · ∏ 𝑓𝑗,𝑖𝑗

𝑀−1
𝑗=0 = ∑ (𝑁−1

𝑖=0 𝐶𝑖 − 𝑏𝑖𝑎𝑠) · ∏ 𝑓𝑗,𝑖𝑗

𝑀−1
𝑗=0 =

∑ 𝐶𝑖
𝑁−1
𝑖=0 · ∏ 𝑓𝑗,𝑖𝑗

𝑀−1
𝑗=0 − 𝑏𝑖𝑎𝑠 · 𝑘𝐵𝑖𝑎𝑠 = ∑ 𝐶𝑖

𝑁−1
𝑖=0 · ∏ 𝑓𝑗,𝑖𝑗

𝑀−1
𝑗=0 − (𝐶𝑜𝑢𝑡 + 𝑠 · 𝐽) · 𝑘𝐵𝑖𝑎𝑠.

837-840 – adds s · kBias · J.

Comment from the developers: For the verification of the Schnorr's generalized signature

only Cout · x1 must be added. But those code lines actually add 2 terms into the equation. We

can rewrite them as: sum += Cout · x1 and sum += kBias * (Cout + s * J).

So, the 1st term is related to Schnorr's signature, whereas the 2nd term is related to the

Sigma proof. The expression (Cout + s * J) is the so-called "bias". It should be subtracted

from all the commitments in the commitment list before the Sigma protocol is applied. So,

instead of subtracting this from each commitment in the list (which is very ineffective), we

subtract it only once with appropriate coefficient. This coefficient kBias is returned from the

Sigma::Proof::IsValid() funciton, and is equal to the negated sum of all the used

commitments with appropriate coefficients.

So, we use the above expressions for optimization. We use Cout only once, with the

coefficient that accounts for both Schnorr's signature and the "bias". And the multiplier for J
is accumulated when multiple proofs are verified at once.

2. void Prover::Generate(const uintBig& seed, Oracle& oracle,

const Point::Native* pHGen) core/lelantus.cpp, lines 844-890

846-848 – generation of the secret key sk.

ptBias – this is Bias = commitment + s · J = k · G + H′ · v + s · J.

850 – adds pHGen · v, where pHGen is H′ or H*.

851 – Commitment = k · G + H′ · v. Commitment in the source is

m_Proof.m_Commitment.

852 – Calculation of SpendPk. In the source it is m_Proof.m_SpendPk and

m_Witness.V.m_SpendSk – the secret key for SpendPk generating.

856-867 – Calculation of parameters for CreateNonces.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 11

SmartDec

868 –

m_Proof.m_Signature.CreateNonces(Context::get().m_Sig.m_CfgGH2,

hv, pSk, pRes); calculates two keys that are written to pRes. pRes[0] is associated

with sk; pRes[1] is associated with v (in documentation) and m_Witnewss.V.m_V (in

source).

Notice: CreateNonces's location is core/ecc.cpp.

869-872 – calculation of m_Proof.m_Signature.m_NoncePub = G · pRes[0] + phGen ·

pRes[1] = G · skrand + phGen · vrand.

874-875 – the signature SignRaw (the case when phGen is set).

m_Proof.m_Signature.SignRaw(Context::get().m_Sig.m_CfgGH2, hv,

m_Proof.m_Signature.m_pK, pSk, pRes);

Notice: SignRaw is located in core/ecc.cpp, line 343. First, receive

pRes[0] = skrand (previous value pRes[0]) + sk · x1 + SpendSk · x2;

pRes[1] = vrand (similarly) +v · x1 + zero · x2, where x1 and x2 are challenges.

In other words, we get the signature m_Proof.m_Signature, in which the field m_pK

consists of two commitments:

m_pk[0] = −skrand − sk · x1 − SpendSk · x2,

m_pk[1] = −vrand − v · x1 − zero · x2 = −vrand − v · x1.

876-878 – the signature sign (the case when phGen is not set and H* is not

hidden). In the output, we get m_NoncePub = skrand · G + vrand · H.

879-881 – In these lines, the serial number is calculated (char in the source, s in the

documentation) and J · s is added to Bios.

882-890 – forming a proof for Sigma.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 12

SmartDec

Sigma implementation review

The verification of this Protocol was based on article [2].

The image below is necessary for a better understanding of the scheme and for comparing

variables from the code with the notation from the article.

Comment from the developers: It is based on the transcript from Aram's Lelantus paper,

but simplified because we don't prove balance, after subtraction of the bias the being-spent

element must consist of the blinding factor only. We united the Gk and Qk, and removed

original zV. By red I marked what we removed, and the green frame - this is what moved

into Gk from Qk.

Brief explanation of the proof

In this case, there are N commits: C0,...CN−1, one of them of the form Comm(0; r). This commit

is under the number l. we need to prove that we know r without revealing (l, r).

For the proof, the commits A, B, C, D are formed, where lj ∈ {0,1}, that is, lj is the jth bit of l.

In addition to these four commits, Gk, where k = 0,…N-1 are considered.

After getting a random x, Prover counts zR, zA, zC and for each j = 0,…M – 1, i = 1,…n – 1

counts fj,i.

Notice: In this case, 𝐶𝑜𝑚𝑚(𝑎, 𝑏) = 𝑎 · 𝐺 + 𝑏 · 𝐻.

https://smartdec.com/
https://lelantus.io/lelantus.pdf

Blockchain Security Analysis

https://smartdec.com

 13

SmartDec

Following the note, we get that 𝐺𝑘 = ∑ (𝐶𝑖𝑝𝑖,𝑘 + 𝐶𝑜𝑚𝑚(0, 𝜏𝑘))𝑁−1
𝑖=0 .

As a result, you need to check the following expressions for equality:

(The first part of the given notes)

𝐵 · 𝑥 + 𝐴 == 𝐶𝑜𝑚𝑚𝑐𝑘(𝑓, 𝑧𝐴); 𝐶 · 𝑥 + 𝐷 == 𝐶𝑜𝑚𝑚𝑐𝑘(𝑓(𝑥 − 𝑓), 𝑧𝐶).

(The second part of the given notes)

∑ 𝐶𝑖

𝑁−1

𝑖=0
∏ 𝑓𝑗,𝑖𝑗

𝑀−1

𝑗=0
+ ∑ 𝐺𝑘

𝑀−1

𝑘=0
(−𝑥𝑘) == 𝐶𝑜𝑚𝑚(0, 𝑧𝑅).

How the second part was obtained:

𝐶𝑜𝑚𝑚(0, 𝑧𝑅) = 0 · 𝐺 + (𝑟𝑥𝑀 − ∑ 𝜏𝑘𝑥𝑘

𝑀−1

𝑘=0

) · 𝐻 = [𝑟𝑥𝑀 · 𝐻 = 𝐶𝑜𝑚𝑚(0, 𝑟) · 𝑥𝑀 = 𝐶𝑙 · 𝑥𝑀] =

= 𝐶𝑙𝑥𝑀 + (− ∑ 𝜏𝑘

𝑀−1

𝑘=0

𝑥𝑘) · 𝐻 = 𝐶𝑙𝑥𝑀 + ∑ 𝐶𝑜𝑚𝑚(0, 𝜏𝑘) · (−𝑥𝑘

𝑀−1

𝑘=0

) =

= 𝐶𝑙𝑥𝑀 + ∑ ∑ 𝐶𝑖𝑝𝑖,𝑘𝑥𝑘

𝑁−1

𝑖=0

𝑀−1

𝑘=0

+ ∑ ∑(−𝐶𝑖𝑝𝑖,𝑘𝑥𝑘) +

𝑁−1

𝑖=0

𝑀−1

𝑘=0

∑ 𝐶𝑜𝑚𝑚(0, 𝜏𝑘)

𝑀−1

𝑘=0

· (−𝑥𝑘) =

= ∑ 𝐶𝑙𝑥𝑀 ·

𝑁−1

𝑖=0

𝛿𝑖𝑙 + ∑ ∑ 𝐶𝑖𝑝𝑖,𝑘𝑥𝑘

𝑁−1

𝑖=0

𝑀−1

𝑘=0

+ ∑ (∑ (𝐶𝑖𝑝𝑖,𝑘 + 𝐶𝑜𝑚𝑚(0, 𝜏𝑘)) · (−𝑥𝑘)

𝑁−1

𝑖=0

) =

𝑀−1

𝑘=0

= [𝛿𝑖𝑙 = 1, 𝑖𝑓(𝑖 = 𝑙), 𝑒𝑙𝑠𝑒 0] = ∑ [𝐶𝑖𝑥𝑀𝛿𝑖𝑙 + ∑ 𝐶𝑖𝑝𝑖,𝑘𝑥𝑘

𝑀−1

𝑘=0

]

𝑁−1

𝑖=0

+ ∑ 𝐺𝑘 · (−𝑥𝑘) =

𝑀−1

𝑘=0

= ∑ 𝐶𝑖 (𝑥𝑀𝛿𝑖𝑙 + ∑ 𝑝𝑖,𝑘𝑥𝑘

𝑀−1

𝑘=0

) + ∑ 𝐺𝑘 · (−𝑥𝑘) = ∑ 𝐶𝑖 · ∏ 𝑓𝑗,𝑖𝑗
+ ∑ 𝐺𝑘 ·

𝑀−1

𝑘=0

(−𝑥𝑘)

𝑀−1

𝑗=0

𝑁−1

𝑖=0

𝑀−1

𝑘=0

𝑁−1

𝑖=0

.

Comparison of symbols

m_Tau – these are coefficients 𝜏k for xk. They are generated randomly at the very beginning.

mz_R is zR. r in this case is (ks + kmw − kout).

m_a is the vector of random values aj.

m_p – these are coefficients pi,k.

m_Witness.V.m_L is commitment’s number l, in which pair of keys is (0, r).

lj is jth bit of number l.

m_vF (size M(n − 1)) is the vector fj, that is, the jth element is equal to fj,1 or fj,0 (see [2]).

m_Part1.m_vG (size M) is vector G.

m_A is A.

https://smartdec.com/
https://lelantus.io/lelantus.pdf

Blockchain Security Analysis

https://smartdec.com

 14

SmartDec

m_B is B.

m_C – is C.

m_D is D.

Сode overview

1. Sigma::CommitmentStd::FillEquation(MultiMac& mm, const

Scalar::Native& blinding, const Scalar::Native* pMultiplier =

nullptr) lines 56-80

In this function, mm.m_pKPrep is filled in depending on the commit as follows:

Commitment mA: filled in with coefficients m_a. At the end, the blinding factor rA is

added.

Commitment mB: filled in with coefficients lj that are equal to 0 or 1 (1 if L % n is

equal to j, otherwise 0). At the end, the blinding factor rB is added.

Commitment mC: filled in with coefficients ±m_aj (with preceding minus sign if L % n is

not equal to j, otherwise with plus sign). At the end, the blinding factor rC is added.

Here, 𝑎𝑗,𝑖(1 − 2𝜎𝑙𝑗,𝑖) part from the article is ±𝑚_𝑎[𝑗 ∗ 𝑛 + 𝑖] in the code.

Commitment mD: filled in with coefficients −𝑚_𝑎𝑗
2. At the end, the blinding factor rD is

added.

2. Calculate(Point& res, MultiMacMy& mm, const Scalar::Native&

blinding) lines 81-89

m_pKPrep is filled with coefficients (scalars that points will be multiplied by), and then

the corresponding commit of the form (a · A + b · B + ...) is calculated.

3. bool IsValid(InnerProduct::BatchContext& bc, const Point& ptA,

const Point& ptB, const Scalar::Native& x, const Scalar& z) lines

90-104

Checks whether 𝑝𝑡𝐴 + 𝑝𝑡𝐵 · 𝑥 == 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(. . . , 𝑧).

4. void CmList::Import(MultiMac& mm, uint32_t iPos, uint32_t

nCount) lines 105-119

It seems that here points are imported to mm, namely points in m_pCasual.

5. void CmList::Calculate(Point::Native& res, uint32_t iPos,

uint32_t nCount, const Scalar::Native* pKs) lines 120-144

This method calculates the commitment. The result is the sum of a · A + b · B + ...

6. bool Proof::IsValid(InnerProduct::BatchContext& bc, Oracle&

oracle, const Cfg& cfg, Scalar::Native* pKs, Scalar::Native&

kBias) const lines 205-349

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 15

SmartDec

238-256 – FillKs. It is considered 𝑚_𝑘𝐵𝑖𝑎𝑠 = ∑ ∑ ∏ 𝑓𝑗,𝑖
𝑀−1
𝑗=𝑘

𝑛
𝑖=0

𝑀−1
𝑘=0 and m_pKs,

(k · n + i)th element of which is ∏ 𝑓𝑗,𝑖; 𝑖 = 0, … , 𝑛, 𝑘 = 0, … 𝑀 − 1𝑀−1
𝑗=𝑘 .

259-276 – calculates fj,0 using fj,1. ∀𝑗: 𝑓𝑗,0 = 𝑥 − ∑ 𝑓𝑗,𝑖
𝑛−1
𝑖=1 .

279-295 – checks whether 𝑚_𝐴 + 𝑚_𝐵 ∗ 𝑥 == 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(𝑓, 𝑚_𝑧𝐴).

297-320 – checks whether 𝑚_𝐷 + 𝑚_𝐶 ∗ 𝑥 == 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡(𝑓(𝑥 − 𝑓), 𝑚_𝑧𝐶).

321-334 – in the second part of the check, there is 𝐺𝑘 on the left. In this case, 𝐺𝑘 is

stored in vector m_Part1.m_vG. This is where 𝐺𝑘 is multiplied by (−xk).

335-348 – scalar m_Part2.m_zR is added, which will be multiplied by G in the commit.

This is the right part of the second check.

Reminder: the right part is equal to Comm (0, m_zR) in our notation.

7. void Prover::UserData::Recover(Oracle& oracle, const Proof& p,

const uintBig& seed) lines 360-390

UserData function is not used yet.

8. void Prover::InitNonces(const uintBig& seed) lines 391-422

This method generates random values:

rA, rB, rC, rD, m_Tau (size = M), m_a (size = M · (n – 1)).

Compute 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 , 𝑟𝐷 , 𝑎𝑗,1, … , 𝑎𝑗,𝑛−1 ←𝑅 ℤ𝑞

for 𝑗 ∈ [0, … , 𝑚 − 1]

𝑎𝑗,0 = − ∑ 𝑎𝑗,𝑖

𝑛−1

𝑖=1

.

9. void Prover::CalculateP() lines 423-476

calculates coefficients pi,k. These coefficients are used when fi,j are multiplied.

10. void Prover::ExtractABCD() lines 478-560

483-494 – Commitment m_A: get_At outputs the values m_a. As a result, we get

the commit m_A with scalars: 𝑚_𝑎[𝑗 · 𝑛 + 𝑖], 𝑖 = 0, … 𝑛 − 1, 𝑗 = 0, … 𝑀 − 1 and rA.

496-517 – Commitment m_B: get_At returns 1 if L % n == i and 0 otherwise.

This results in commit m_B with scalars: 1 or 0, 𝑖 = 0, … 𝑛 − 1, 𝑗 = 0, … 𝑀 − 1, and rB.

519-542 – Commitment m_C. get_At returns −𝑚_𝑎[𝑗 · 𝑛 + 𝑖] if L % n == i and

𝑚_𝑎[𝑗 · 𝑛 + 𝑖] otherwise.

The result is m_C commit with ±𝑚_𝑎[𝑗 · 𝑛 + 𝑖], 𝑖 = 0, … 𝑛 − 1, 𝑗 = 0, … 𝑀 − 1 and rC.

544-560 – Commitments m_D: get_At outputs −𝑚_𝑎2[𝑗 · 𝑛 + 𝑖]. The result is the

commit m_D with −𝑚_𝑎2[𝑗 · 𝑛 + 𝑖], 𝑖 = 0, … 𝑛 − 1, 𝑗 = 0, … 𝑀 − 1 and rD.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 16

SmartDec

IMPORTANT: in the article, the commit is denoted as ci. In our case, this commit

refers to the difference of commitments, as written in [3]: 𝑐𝑖 = 𝐶𝑖 − 𝑝𝑡𝐵𝑖𝑎𝑠 = [𝐶𝑖 is

from Shielded pool, 𝑝𝑡𝐵𝑖𝑎𝑠 = 𝐶𝑜𝑢𝑡 + 𝑠 · 𝐽] == (𝑘𝑠 + 𝑘𝑀𝑊 − 𝑘𝑜𝑢𝑡) · 𝐺.

Methods ExtractG_Part() and ExtractG() are used to calculate the vector

m_vG. Its elements correspond to the values of 𝐺𝑘 = ∑ 𝐶𝑖𝑝𝑖,𝑘
𝑁−1
𝑖=0 + 𝐶𝑜𝑚𝑚(0, 𝜏𝑘).

In this case, values (− ∑ 𝑝𝑡𝐵𝑖𝑎𝑠 · 𝑝𝑖,𝑘
𝑁−1
𝑖=0) are added to

𝐺𝑘 = ∑ (𝐶𝑖𝑝𝑖,𝑘 − 𝑝𝑡𝐵𝑖𝑎𝑠 · 𝑝𝑖,𝑘 + 𝐶𝑜𝑚𝑚(0, 𝜏𝑘))𝑁−1
𝑖=0 .

Value ∑ 𝐶𝑖 · 𝑝𝑖,𝑘
𝑁−1
𝑖=0 is calculated in ExtractG_Part() method, whereas

(− ∑ 𝑝𝑡𝐵𝑖𝑎𝑠 · 𝑝𝑖,𝑘
𝑁−1
𝑖=0) value is calculated in ExtractG() method.

11. void Prover::ExtractG_Part(GB* pGB, uint32_ti 0, uint32_t i1)

lines 568-613

Here, structure vector m_vGB is filled with the following values:

𝑚_𝑣𝐺𝐵. 𝑚_𝐺 = ∑ 𝐶𝑖𝑝𝑖,𝑘
𝑁−1
𝑖=0 , 𝑚_𝑣𝐺𝐵. 𝑚_𝑘𝐵𝑖𝑎𝑠 = ∑ 𝑝𝑖,𝑘

𝑁−1
𝑖=0 .

12. void Prover::ExtractG(const Point::Native& ptBias) lines 615-689

681 – when Calculate() method is called, commit 𝐶𝑜𝑚𝑚(0, 𝜏𝑘) is calculated

(Comm(0, m_Tauk) in the code). m_kBias is multiplied by (−ptBias). Thus, all three

components of 𝐺𝑘 are calculated. The next 𝐺𝑘 is added to m_Proof.m_Part1.m_vG.

13. void Prover::ExtractPart2(Oracle& oracle) lines 699-739

oracle >> x1; getting challenge (as in article).

ExtractBlinded(m_Proof.m_Part2.m_zA, m_vBuf[Idx::rB], x1,

m_vBuf[Idx::rA]); calculates 𝑚_𝑧𝐴 = 𝑟𝐵 · 𝑥1 + 𝑟𝐴.

ExtractBlinded(m_Proof.m_Part2.m_zC, m_vBuf[Idx::rC], x1,

m_vBuf[Idx::rD]); calculates 𝑚_𝑧𝐶 = 𝑟𝐶 · 𝑥1 + 𝑟𝐷.

707-717 – calculates 𝑚_𝑧𝑅 = −(𝑚_𝑇𝑎𝑢[0] + 𝑚_𝑇𝑎𝑢[1] · 𝑥1 + 𝑚_𝑇𝑎𝑢[2] · 𝑥1
2 +

𝑚_𝑇𝑎𝑢[3] · 𝑥1
3 + 𝑚_𝑇𝑎𝑢[4] · 𝑥1

4) + (𝑘𝑠 + 𝑘𝑚𝑤 − 𝑘𝑜𝑢𝑡) · 𝑥1
5.

m_Tau is a coefficient of pk for xk. They are generated randomly at the very beginning.

(𝑘𝑠 + 𝑘𝑚𝑤 − 𝑘𝑜𝑢𝑡) is r in the documentation.

718-739 – calculates fj,1, fj,0 which are added to the vector m_vF:

∀𝑗 ∈ [0, 𝑚 − 1], 𝑖 ∈ [1, 𝑛 − 1] 𝑓𝑗,𝑖 = 𝜎𝑙𝑗𝑖𝑥 + 𝑎𝑗,𝑖.

14. void Prover::Generate(const uintBig& seed, Oracle& oracle,

const Point::Native& ptBias) lines 741-765

In this method, the order of functions calls is clear.

InitNonces(seed); – generates 𝑟𝐴, 𝑟𝐵, 𝑟𝐶, 𝑟𝐷, and m_Tau(τk), and m_a(aj).

ExtractABCD(); – calculates 𝑚_𝐴, 𝑚_𝐵, 𝑚_𝐶, 𝑚_𝐷.

https://smartdec.com/
https://github.com/BeamMW/beam/wiki/MW-CLA

Blockchain Security Analysis

https://smartdec.com

 17

SmartDec

CalculateP(); – calculates pi,k.

ExtractG(ptBias); – calculates m_vG, or Gk in the documentation.

m_Proof.m_Part1.Expose(oracle); – values 𝑚_𝐴, 𝑚_𝐵, 𝑚_𝐶, 𝑚_𝐷, and m_vG

vector are sent to an oracle.

ExtractPart2(oracle); – calculates 𝑚_𝑧𝐴, 𝑚_𝑧𝐶, 𝑚_𝑧𝑅, and vector m_vF.

Comment from the developers: We use batch-verification technique throughout the code

extensively. We need to verify that many different expressions of the form

Sum(k[i,j] * A[j]) = 0, verify for each i. Instead of verifying each of them individually we

multiply each expression by a pseudo-random multiplier and verify that sum of them all is

zero. Means, Sum(k[i,j] * multiplier[i] * A[j]) = 0.

This is an important optimization. If a point A[j] is shared for different expressions, then

obviously adding scalars is more efficient than points. But even if all the points are different,

still calculating multi-exponentiations of many points at once is beneficial.

So, the whole Lelantus proof is converted into one big equation. Moreover, many such

proofs are also combined, and the whole block (or even many blocks verified at once) is

verified as a single multi-exponentiation, which includes Lelantus proofs, bulletproofs, and

Schnorr's signatures.

All this logic is handled in BatchContext class. The EquationBegin() member function

regenerates the pseudo-random multiplier, and functions AddCasual() and

AddPrepared() automatically multiply the given scalar by the current multiplier.

However, in some cases we use the multiplier explicitly as an optimization. For example if

there's a sequence of many scalars derived from each other (like powers of a number),

then we multiplier explicitly to calculate the initial values, and then use versions

AddCasual(bPremultiplied set to true) and AddPreparedM() that assume multiplier

was already applied.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 18

SmartDec

Shield.cpp review

https://github.com/BeamMW/beam/wiki/MW-CLA

bool ShieldedTxo::IsValid(ECC::Oracle& oracle, ECC::Point::Native&

comm, ECC::Point::Native& ser) const line 48

Validation of Schnorr’s signature. RangeProof validation.

Input

Consists of the following:

• Range within the shielded pool, that contains the being-spent element.

• SpendKey is revealed, and the whole shielded input is signed by the appropriate

private key.

• Optionally asset info: the blinded asset generator + asset surjection proof.

• Output commitment 𝐶𝑜𝑢𝑡 = 𝑘𝑜𝑢𝑡 · 𝐺 + 𝑣 · 𝐻.

o It should commit to the same value, but the blinding factor kout is different from

that used in shielded output.

• Generalized Schnorr’s signature, that proves the Cout is indeed of this form.

• Sigma proof for the rest.

• m_pK[2] – ks, s are stored here.

• m_SerialPub – commitment 𝐶𝑠 = 𝑘𝑠 · 𝐺 + 𝑠 · 𝐽.

void

ShieldedTxo::Data::TicketParams::DoubleBlindedCommitment(ECC::

Point::Native& res, const ECC::Scalar::Native* pK) line 135

calculates 𝑟 · 𝐽 + 𝑘 · 𝐺.

void ShieldedTxo::Data::TicketParams::set_FromkG(Key::IPKdf&

gen, Key::IKdf* pGenPriv, Key::IPKdf& ser) line 151

Receives serial number and initializes m_pK[1] as this sn.

void ShieldedTxo::Data::TicketParams::GenerateInternal(Ticket&

s, const ECC::Hash::Value& nonce, Key::IPKdf& gen, Key::IKdf*

pGenPriv, Key::IPKdf& ser) line 189

Calculates Cout and forms Schnorr’s signature.

void

ShieldedTxo::Data::TicketParams::set_SharedSecretFromKs(ECC::P

oint& ptSerialPub, Key::IPKdf& gen) line 206

calculates 𝐶𝑠 = 𝑘𝑠 · 𝐺 + 𝑠 · 𝐽.

https://smartdec.com/
https://github.com/BeamMW/beam/wiki/MW-CLA

Blockchain Security Analysis

https://smartdec.com

 19

SmartDec

bool ShieldedTxo::Data::TicketParams::Recover(const Ticket& s,

const Viewer& v) line 229

checks the signature and gets the challenge.

268 – checks the serial number

output

Consists of the following:

• Blinded serial number commitment: 𝐶𝑠 = 𝑘𝑠 · 𝐺 + 𝑠 · 𝐽.

• Generalized Schnorr’s signature that proves the above commitment is indeed of this

from.

• Optionally asset info: the blinded asset generator + asset surjection proof.

• UTXO commitment 𝐶𝑀𝑊 = 𝑘𝑀𝑊 · 𝐺 + 𝑣 · 𝐻.

• Rangeproof.

This applies to Shielded input:

• m_k - kMW.

void ShieldedTxo::Data::OutputParams::Generate(ShieldedTxo&

txo, const ECC::Hash::Value& hvShared, ECC::Oracle& oracle,

bool bHideAssetAlways /* = false */) line 337

Here commitment 𝐶𝑀𝑊 = 𝑘𝑀𝑊 · 𝐺 + 𝑘1 · 𝑣 · 𝐺 + 𝐻 ∗· 𝑣 is formed. Then

RangeProof.CoSign is called.

bool ShieldedTxo::Data::OutputParams::Recover(const

ShieldedTxo& txo, const ECC::Hash::Value& hvShared,

ECC::Oracle& oracle) line 383

408-418 – calculates 𝐶𝑀𝑊 = 𝑘𝑀𝑊 · 𝐺 + 𝑘1 · 𝑣 · 𝐺 + 𝐻 ∗· 𝑣 and checks for equity of

commitments.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 20

SmartDec

Manual Security Analysis

Here we inspect the code manually and check whether it is secure and meets best coding

practices.

Critical issues

Critical issues seriously endanger project security. We highly recommend fixing them.

The audit showed no critical issues

Medium severity issues

Medium issues can influence project operation in current implementation. We highly

recommend addressing them.

The audit showed no issues of medium severity.

Low severity issues

Low severity issues can influence project operation in future versions of code. We

recommend taking them into account.

Zeroing objects

In numerous locations various objects are cleared by using memset or equivalent. This

behavior is well defined only for so-called standard layout types. Apparently, all the current

memory zeroing cases in the code deal with such types. However, this assumption makes

those types fragile for potential changes.

If the use of memset is preferred for performance reasons, it is recommended to guard the

uses against possible breakage with static_assert as in common.h.

77

78

79

80

81

82

83

84

template <typename T>

inline void ZeroObject(T& x)

{

 // TODO: uncomment and fix

 //static_assert(std::is_standard_layout_v<T>);

 static_assert(std::is_trivially_destructible_v<T>);

 ZeroObjectUnchecked(x);

}

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 21

SmartDec

static_assert guard incurs no performance penalty but increases the type safety of the

code. For compatibility reasons, the existing code asserts trivially destructable object rather

than standard layout. This should be reviewed and fixed.

Use of volatile

volatile keyword is used in the code. Some examples are as follows.

File block_crypt.h

908 bool Combine(IReader&& r0, IReader&& r1, const volatile bool& bStop);

And the implementation (block_rw.cpp)

67

68

69

70

while (true)

{

 if (bStop)

 return false;

The intent of using volatile is to prevent storing bStop variable in a CPU register, so

another thread can request premature finishing of the function. However, volatile

keyword is not intended to work in multi-threading environment. Volatile variables are still

prone to data races.

Instead of volatile keyword, it is recommended to use std::atomic, for example:

bool Combine(IReader&& r0, IReader&& r1, const std::atomic_bool& bStop);

Comment from the developers: We know that volatile is prone to data races, memory

i/o reordering, etc. But we assume they give better performance than atomic operations

(which translate to asm instructions with lock semantics), especially when used in loops.

In those specific cases you mentioned we prefer to use volatile, because data races are

not important. It is an abortion flag; we do not care if it will have effect immediately or with

some minimal delay.

SmartDec response: To avoid excessive costly synchronization, it is better to use weak

memory ordering: memory_order_relaxed.

For example, atomic_var.load(memory_order_relaxed).

Return value ignored

Throughout the code the following idiom is used for getter methods:

bool get_X(X& x) { x = whatever; return success; }

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 22

SmartDec

However, the return code is not checked consistently. For example, block_rw.cpp:

434

435

436

437

438

Merkle::Hash hv;

v.get_Live(hv);

if (!(m_Cwp.m_hvRootLive == hv))

 ThrowBadData();

In this code snipped the following check remedies.

Comment from the developers: This is a correct point. We do not "ignore" return values

on purpose. But we assume specific conventions. In this specific place, we assumed that,

apart of returning false, the called function also zeroes the hv. But apparently it does not.

P.S. In this specific point there should be no situation when false is returned. But to make it

more obvious, at least assert() should be placed.

Struct BigFloat inside struct Difficulty

File difficulty.cpp contains definition of BigFloat structure. Consider moving this

structure into a separate file.

Inefficient use of file descriptors

File block_crypt.cpp defines GenRandom. The POSIX version of the function opens

/dev/urandom each time it is called.

Inefficient code

File lelantus.cpp defines function Cfg::get_N().

Surrogate scoped enums

File navigator.h contains the following definition.

27

28

29

30

31

32

struct Type {

 enum Enum {

 Tag,

 count

 };

};

This definition places the constants Tag and count to the scope of Type structure.

However, the same intent is expressed better with enum classes:

enum class Type { Tag, count };

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 23

SmartDec

Custom offsetof implementation

File common.h contains the definition of IMPLEMENT_GET_PARENT_OBJ.

55

56

57

58

59

60

#define IMPLEMENT_GET_PARENT_OBJ(parent_class, this_var) \

 parent_class& get_ParentObj() const { \

 parent_class* p = (parent_class*) (((uint8_t*) this) + 1 -

(uint8_t*) (&((parent_class*) 1)->this_var)); \

 assert(this == &p->this_var); /* this also tests that the

variable of the correct type */ \

 return *p; \

 }

This macro generates function get_ParentObj, which returns the reference to the object

that aggregates this object.

However, the expression &((parent_class*) 1)->this_var results in Undefined

Behavior.

It is recommended to rewrite the macro using offsetof standard macro. offsetof is

included into the modern standards and has specified behavior for standard layout types.

Thread joining in destructors

File treasury.cpp contains the following code.

140

141

142

143

144

145

~ThreadPool()

{

 for (size_t i = 0; i < m_vThreads.size(); i++)

 if (m_vThreads[i].joinable())

 m_vThreads[i].join();

}

The destructor of class ThreadPool joins the threads in vector m_vThreads.

Suboptimal implementation for arbitrary-precision arithmetics

File uintBig.cpp contains an in-house implementation for arbitrary-precision arithmetics.

The implementation uses simple multiplication and division algorithms with time complexity

O(n2).

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 24

SmartDec

Off-by-one error

File http_msg_creator.cpp contains the following function.

37

38

39

40

41

42

43

44

45

46

47

48

49

bool write_fmt(io::FragmentWriter& fw, const char* fmt, ...) {

 static const int MAX_BUFSIZE = 4096;

 char buf[MAX_BUFSIZE];

 va_list ap;

 va_start(ap, fmt);

 int n = vsnprintf(buf, MAX_BUFSIZE, fmt, ap);

 va_end(ap);

 if (n < 0 || n > MAX_BUFSIZE) {

 return false;

 }

 fw.write(buf, n);

 return true;

}

Line 44 checks that the formatted string fits into the buffer buf but does not consider \0

terminator byte. The correct check should look as follows.

if (n < 0 || n >= MAX_BUFSIZE) {

Missing integer overflow check

File http_msg_reader.cpp.

101

102

103

char* e = 0;

int64_t ret = strtol(val.data(), &e, 10);

if (size_t(e - val.data()) != val.size()) return defValue;

This code snippet does not check that string to integer conversion does not overflow. It may

be fixed as follows:

char* e = 0;

errno = 0; // errno may contain stale error code

int64_t ret = strtol(val.data(), &e, 10);

if (errno || size_t(e - val.data()) != val.size()) return defValue;

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 25

SmartDec

Undefined behavior in functions from <cctype>

File http_msg_reader.cpp.

144

145

146

147

148

149

150

inline bool equal_ci(const char* a, const char* b, size_t sz) {

 const char* e = a + sz;

 for (; a !=e; ++a, ++b) {

 if (*a != tolower(*b)) return false;

 }

 return true;

}

According to the language standard tolower function accepts values in range [-

1...255]. If the argument falls out of this range, the behavior of the function is undefined.

On x86 platform char is a signed type, so the range of values of type char is [-

128...127]. The standard-conforming usage of toupper is as follows.

if (*a != tolower((unsigned char) *b)) return false;

Usually nobody cares much about casting the argument to unsigned char, as all known

standard library implementations support negative arguments and actually accept values in

range [-128...255], but it must be noted for the sake of correctness.

Insecure SECURE_ERASE_OBJ

File hw_crypto.c.

46 #define SECURE_ERASE_OBJ(x) memset(&x, 0, sizeof(x))

Use of memset is not considered secure. Compilers may optimize it out on high levels of

optimization. Consider using a properly secure implementation of memory zeroing, as

provided by libsodium or likes.

Comment from the developers: I agree. This is a reference code to be used in the HW

wallet implementation (ledger, trezor, and similar devices). They will need to re-define

SECURE_ERASE_OBJ, as long as several other things suitable for them. We keep this

source code in our project to test that it performs identical to our C++ implementation of the

similar functionality.

https://smartdec.com/

Blockchain Security Analysis

https://smartdec.com

 26

SmartDec

List of references

[1] Gary Yu “Simple Schnorr Signature with Pedersen Commitment as Key”, p.4. Feb. 22,

2020. Link: https://eprint.iacr.org/2020/061.pdf

[2] Aram Jivanyan “Lelantus: Towards Confidentiality and Anonymity of Blockchain

Transactions From Standard Assumptions”. Link: https://lelantus.io/lelantus.pdf

[3] https://github.com/BeamMW/beam/wiki/MW-CLA

https://smartdec.com/
https://eprint.iacr.org/2020/061.pdf
https://lelantus.io/lelantus.pdf
https://github.com/BeamMW/beam/wiki/MW-CLA

Blockchain Security Analysis

https://smartdec.com

 27

SmartDec

This analysis was performed by SmartDec.

Katerina Troshina, Chief Executive Officer

Alexander Chernov, Chief Research Officer

Daria Korepanova, Security Analyst

Aleksey Ivushkin, Security Analyst

Boris Nikashin, Analyst

Alexander Seleznev, Chief Business Development Officer

June 23, 2020

https://smartdec.com/
https://smartdec.com/

