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Aspects of ASIC friendliness

Multiple different aspects to consider

• Benefit of ASIC over common hardware

• Development effort

• Expected chip size

• Stability of PoW

Not one Type of ASIC

• Single chip ASICs

– Often much quicker

– Larger chip size

• Multi chip ASICs

– Smaller chips with distinguished function

– Cheaper, but slower
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Beam PoW Strategy

Why not change the PoW every 6 month?

● Avoid disruption of mining ecosystem

● Mining is important – but it is not everything

● Stable consensus is only path to mass adoption
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Beam PoW Stragegy

● Give GPU miners a head start

● Make mining as relaxing as possible

● When first ASICs come: make them “cheap”



Some Equihash Basics - Generation
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Some Equihash Basics - Matching
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Some Equihash Basics – Growing Index Tree
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Round 1

Round 2

Round 3

...

Index AIndex A Index BIndex B Index DIndex D Index CIndex C

Index ABIndex AB Index DCIndex DC

Index ABDCIndex ABDC

For BeamHash I / II:

● We match 25 bits each rounds (50 in the last)

● 5 Rounds total – so 32 indexes that give a 0 xor



What could be better?

Implementation Aspects

● The number of bits moved changes every round

● The index tree is scattered

● Massive filtering of invalids required

Algorithmic Aspects

● Blake2B is quite compute heavy

● The elements to be load / stored are rather small
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BeamHash III Basics - Generation
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BeamHash III Basics – Mixing before Round
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Beam Hash III Basic Properties

Implementation Aspects

● We start with 448 bit element length and decrease this so 
the total number of element bits + index tree fits 64 byte

● The index tree is part of mix and is no longer scattered
→ This gives a very simple memory layout

● No more filtering of invalids midway

Algorithmic Aspects

● The generation is much less compute heavy

● Each load / store is 64 byte and fits well the L2 cache 
architecture of currently state of the art GPUs

11



Conclusion

Beam Hash III ...

● … is easier to implement then Beam Hash I / II

● … fits well into 5G memory (4G and 3G are possible)

● … is made to utilize the memory bandwidth of all
    current GPUs better then any other Equihash

● … is single chip ASIC “resistant” for the next years

● … allows affordable multi chip ASIC designs

… is a good PoW for Beam to go with  
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