
Beam Mining Algorithm Design

Wilke Trei

December 2018

1 What is Equihash?

Despite its name Equihash is no hash function in the narrow sense. Instead an
Equihash solution is the solution to a mathematical problem. The problem
can be formulated like follows.

Definition 1 Let n and k be the Equihash parameters and let work and
nonce be given bitstreams. Then we define m := n

k+1
to be the collision

length for n and k. Further let

B(k) := Blake2B (concat (work, nonce, l))

be the output of the Blake2B hash function for l = 0 . . . 2m+1

b 512
n
c .

Finally compute s := b512
n
c disjoint sections of length n bits out of each

B(l) and index them first in order of l and then in their local position within
B(l).

Then a valid solution of the Equihash problem is a set of 2k indexes such
that

• all indexes are pairwise distinct,

• for any 1 ≤ i < k the exclusive or (xor) of all elements referenced by
an 2i+1 elements index block is 0 on the first i ·m bits ,

• the exclusive or of all elements indexed by the solution equals 0.

• the indexes are sorted in a way such that for two index blocks with 2i

indexes each the one with the lowest leading element leads first. E.g.
I2·j < I2·j+1 for all 0 ≤ j ≤ 2k−1.

1



Note that this is no full formal description but it will be enough to discuss
the characteristics of Equihash. First of all we note that an Equihash prob-
lem instance may or may not have a solution. In fact there are on average
approximately two solutions for each concrete problem instance. The proof
for this is out of scope for this document.

2 Difficulty of an Equihash Problem

The algorithm behind the computation of an Equihash solution is the Wagner
algorithm. The basic idea is to find pairs of bit streams matching on its lowest
m bits. The XOR of each such pair will then give a bitstring that is shorter
by m bits and is input to the next round. Iterating this process k − 1 times
will create bitstreams of length 2m that each have 2k−1 full length ancestors.
If two such elements match on the remaining 2m bits and its ancestors are
pairwise distinct they will give raise to an Equihash solution.

The matching can be achieved by sorting the elements by their lowest bits
in each of the overall k rounds. The complexity of sorting is quasi-linear in
is the number of elements to be sorted, which equals 2m+1 in the beginning.
It can be shown that the expected number of pairs generated in each round
is again 2m+1 except for the last round where we only expect two outputs
because we match elements on twice the number of bits.

The following table lists the number of elements to be generated for the
most frequently used Equihash instances.

Coin a MinexCoin ZCash AION BitcoinZ Zero BEAM
n 96 200 210 144 192 150
k 5 9 9 5 7 5
m 16 20 21 24 24 25
Elements 217 221 222 225 225 226

Memory Use b ≈ 7 ≈ 200 ≈ 600 ≈ 1600 ≈ 3000 ≈ 3800

aFirst appearance of the Equihash parameters as primary PoW
bIn MBytes per instance for current GPU efficient implementations

We see that the memory use as well as the number of elements to be
processed is dominated by the number of collision bits m, which is a better
indicator for the algorithms complexity then the bitlength of the elements
generated n. In the following section we will discuss the advantages FPGAs

2



and ASICs have over GPUs when computing Equihash solutions and our
proposal to reduce their efficiency margin.

3 Analysis of ASIC and FPGA advantages

over GPUs for performing Equihash

Current ASIC implementations of the Equihash 200/9 algorithm make use
of large amounts of on chip memory offering a low latency and high memory
bandwidth. For example the Bitmain Z9 Mini features 144 Mbyte of on Chip
memory which is close to the theoretic minimal memory for performing the
algorithm on a CPU. Given the performance of the ASIC the used bandwidth
exceeds 5 Tbytes per second.

In contrast an efficient GPU implementation will usually use a larger
memory footprint because the off chip memory controllers benefit from read
and write access that is at least 32bit, better 128 bit aligned. Off chip memory
has a bandwidth ranging of about 256 Gbyte/s on medium range GPUs to
trice the value on high end GPUs equipped with HBM2 memory.

Beside the advantages of high amount of on chip memory and better
packed access patters an ASIC as well as an FPGA can trade time spend for
parallelizeable compute operations by chip space and power consumption by
assigning more circuits to the task. For Equihash the fraction offering most
potential for this trade is the Blake2B algorithm.

A massively increased performance of the Blake2B algorithm may be
beneficial to trade compute power against bandwidth like follows. In the first
rounds of the Equihash matching phases less bits then required for performing
the full algorithm can be stored and loaded. As soon as the abandoned bits
get required for continuing with the algorithm the chip can recover them by
computing the hashes again from the indexes carried to this round.

This approach is in particular efficient in the early rounds when the band-
width required to transfer the indexes is low compared with the transfer of
the original workload bits. Also in this early rounds less different blake2b
passes have to be used to recover the concrete bits. For GPUs this approach
is not an option, because adding blake2b computations increases duration in-
stead of space of the algorithm. Also this operations consume too much time
to be hidden when performing memory operations and they would increase
power consumption as well.

3



4 Applicability towards Equihash 150/5

In the previous section we defined three potential benefits of ASICs compared
to GPUs that are large on chip memory areas, a better packing and coalescing
of off-chip memory operations and time-space algorithm trade-off.

Regarding the first issue we have strong confidence that a specialized chip
for Equihash 150/5 will not take this exact approach due to its increased
memory footprint. When completely computed the output of the first round
is (26 + 150) · 226 bits and thus approx 1.4 Gbytes. We claim that with
growing index tables of matched elements this is a sharp lower bound. This
even applies when using the trick described in the time memory trade-off part
of the previous section, because even the indexes written in the first 4 rounds
compressed to 36 bits per matched element plus the required remaining bits
for performing the final matching round requires at least this space.

In practice we even can estimate that the real memory consumption of
an efficient implementation is at least twice the size, similar to the ZCash
parameters.

Therefore a single chip ASIC holding enough memory to perform all op-
erations at Tbytes per second bandwidth range would be of 10 to 20x the
size of the chip to perform ZCashs Equihash 200/9 algorithm on the same
manufacturing process. This would increase the cost for producing the chip
dramatically because on the same production processes a higher yield can be
expected and also larger chips are more costly.

Of cause this approach may and will get feasible in the future with ad-
vanced production methods and new technologies regarding fast on chip
memory or staking chips with height bandwidth. Never the less the men-
tioned amount of memory is high enough that the time to market of such
new inventions will be longer then our planned PoW review and adjustment
period.

The second benefit is of architectural nature with ASICs as well as FP-
GAs being able to perform memory operations that use bitlength that are
not a multiple of 32 more efficiently. Also adding more circuits in the imple-
mentation to ensure a better memory coalescing when using external memory
chips is exclusive to these chips, while a GPU can improve its memory access
patterns only by using software solutions.

We therefore believe this benefit can not be mitigated directly by an
algorithm change unless changing the parameters in a way that most memory
operations are forced to be in ideal range for GPUs. This is out of scope for

4



Equihash with nowadays capacities.
Anyways we claim that the total effect of this benefit is limited by the

capacities of the external memory controller. For the already well tuned
Equihash 144/5 parameters it is known that a single run requires approx-
imately 5 Gbytes of memory bandwidth in total. Each run will produce 2
solutions on average. Modern implementations can run up to 60 solutions per
second on an unmodified Nvidia GTX 1080. Therefore on this cards about
150 Gbytes/s of the total available 352 Gbyte/s are effectively used. So a
specialized chip equipped with the same memory but more efficient mem-
ory access patterns may have a gain limited to a factor of about 2.5 if the
algorithm behind is forced to write the same data.

This enforcement aligns with the potential space to memory and band-
width trade-off discussed before. The BEAM project proposes an algorithm
change that makes the trade-off more costly in terms of space requirement
and power consumption of the resulting chip.

Note that specialized devices that are programmable as GPUs but are re-
duced to and specialized for the required operations to mine crypt-currencies
and offer additional optimizations for memory access still may be able to
perform the algorithm 2-3x faster then a GPU equipped with the same mem-
ory and that at a potentially lower energy consumption. On the long term
preventing such devices from mining the algorithm is not feasible. At the
time of writing no such designs are publicly available nor is there a concrete
announcement of such, so we assume that the desired head start for GPU
mining BEAM is given.

5 BEAM modification of Equihash 150/5

By the nature of the Equihash 150/5 algorithm it has a blocking rate of 3
in its Blake2b phase. This is that if the original algorithm is modified in a
way that in later rounds the Blake2b algorithm has to be performed again,
for each hash string we require 3x the computation amount of the initial
calculation, because in the first round 3 hash strings of 150 bit length are
generated in one computation.

This also applies to the verification of an Equihash 150/5 solution, but
is no issue for the verification because the total number of Blake2b runs to
verify one solution is 32 while the avergage number of runs for generating
one solution exceeds 11184810 that is approx 226

3·2 .

5



We propose to increase the blocking factor to 48 by the following scheme.

Algorithm 2 Let B(l) be the 512 bit string corresponding to the Blake2b
hash for input index l and let B(l)j be the j-th 32 bit component interpreted
as 32 bit integer. Then let B′(l) be the 512 bit string computed like follows:

c← 16 · b l
16
c

B′(l)← 0
while c ≤ l do

B′(l)j ← B′(l)j + B(c)j for all 0 ≤ j < 16
c← c + 1

end while

Thus in order to compute the modified hash string B′ it may be required
to know all 15 other hashed in the same group of 16 hash elements. On a GPU
this can be cheaply achieved by using the local memory on the device in the
initial computation phase. Also on modern GPUs neighbored threads with
index only varying on the lowest four bits run in lock steps, so the sharing
over the local memory does not introduce new synchronization barriers.

Therefore for performing the algorithm the intended way the slow down
by the extra computation of the sums will be negligible. On the other hand
when it is intended to run Blake2b later again to recover bits from known
indexes this is up to 16 times more costly then before and overall up to 48
times so costly then in the initial round with an average extra cost factor of
24.

By this approach we aim towards forcing the algorithm to follow the
same algorithm implementation as done on GPUs or else to use more chip-
space and drastically increased power consumption, because performing the
Blake2b algorithm is the most power consuming component of Equihash.

Note that also the verification of solutions get more costly by an average
factor of eight. But since only few solutions needs to be verified and due to the
still high asymmetry of generation effort compared to verification effort the
drawback is acceptable. Overall with this modification the verification of an
Equihash 150/5 solution can be done at lower average cost as the verification
of an Equihash 200/9 solution while the worst case costs are equal.

6


