
BeamHash II Specification

Wilke Trei

June 17, 2019

Contents

1 Equihash 2
1.1 Definition of an Equihash Solution . 2
1.2 Equihash Mining Algorithm . 2
1.3 Resource Consumption of Equihash Mining . 4
1.4 Equihash on Special Purpose Hardware . 5
1.5 Applicability towards Equihash 150/5 . 5

2 BeamHash II & EquihashR Family of PoW 7
2.1 BeamHash I Data Path Change . 7
2.2 EquihashR Family Definition . 7
2.3 BeamHash II . 8
2.4 Empirical Analysis . 9

Introduction

Proof-of-work (PoW) is a common central concept to secure cryptocurrencies as well as block-
chains in general. In this document we introduce a new family of PoW schemes that are based
on the Equihash proof of work scheme. One member of this family named BeamHash II will be
used as new PoW scheme for the cryptocurrency Beam [1] from the planned fork in July 2019.
Due a new set of parameters for the EquihashR family of PoW schemes it also allows to classify
the previous proof of work BeamHash I as a member of the new family.

Equihash is a family of PoW schemes that were introduced by Alex Biryukov and Dmitry
Khovratovich in 2017 [3]. Equihash is a computationally asymmetric proof of work scheme
that offers a fast verification of a computationally hard problem. The schemes computational
complexity as well as its memory footprint can widely be parameterized.

In this document we will first provide the basic definitions around Equihash and analyze the
impact of the Equihash parametrization on the memory consumption as well as the computational
complexity. Also we will discuss strategies on special purpose hardware implementations and
collect arguments which ranges of parametrization may be feasible for hardware implementations
with modern technology.

In the second section we will review the change made to stock Equihash 150/5 towards
BeamHash I and introduce the new parametrization set that gives raise to the EquihashR family
of PoW schemes and to BeamHash II in concrete.

1

1 Equihash

1.1 Definition of an Equihash Solution

Despite its name Equihash is no hash function in the narrow sense. Instead an Equihash
solution is the solution to a mathematical problem. The problem can be formulated like follows.

Definition. Let n and k be the Equihash parameters and let work and nonce be given bit streams.
Then we define m := n

k+1 to be the collision length for n and k. Further let

B(k) := Blake2b (concat (work, nonce, l))

be the output of the Blake2b hash function for l = 0 . . . 2m+1

⌊ 512
n ⌋ .

Out of each B(l) one computes s := ⌊ 512n ⌋ disjoint sections of length n bits and index them first
in order of l and then in their local position within B(l).

Then a valid solution of the Equihash problem is a set of 2k indexes such that

(a) all indexes are pairwise distinct.

(b) for any 1 ≤ i < k the exclusive or (xor) of all elements referenced by an 2i+1 elements
index block is 0 on the first i ·m bits.

(c) the exclusive or of all elements indexed by the solution equals 0.

(d) the indexes are sorted in a way such that for two index blocks with 2i indexes each the one
with the lowest leading element leads first. E.g. I2·j < I2·j+1 for all 0 ≤ j ≤ 2k−1.

For the sake of completeness we must mention that when computing the s sections the starting
points of each segment are byte aligned. Since 512 is a power of two and one byte equals 8 bits
this byte alignment has no impact on the number s, but changes the position and value of some
of the segments in case 8 ∤ n.

Bit 0 152 304 456 512

Figure 1: Positioning of Equihash 150/5 segments in a single 512 bit Blake2b output with padding bits

We immediately note the asymmetry between the computation effort of a solution and its
verification. To verify a given index set we only require to check the conditions on index ordering
and compute the 2k segments of Blake2b output and xor them in the right order to validate the
index set is a valid solution. For the generation of such a solution we must consider all 2m+1

Blake2b output segments that are allowed. In the next section we will line up the most common
algorithm for generating valid index sets.

1.2 Equihash Mining Algorithm

The central concept of Equihash verification and mining are so called step rows. A step row
is composed of the n bit wide segment mentioned in the previous definition, that is segmented
into k − 1 segments of size m and one final of size 2m. Alongside, the index of the segment is
stored. The pattern of the segmentation of the n bits is illustrated in Figure 2.

The algorithm behind Equihash mining is the Wagner algorithm [6]. Its core functionality is
given by combining step rows in overall k rounds. This is done by sorting all step rows by their
most significant remaining sub-segment of either m or 2m bits. If for two step rows in round i
their corresponding sub-segments are equal, an output step row is created. This output has only

2

Bit 0 25 50 75 100 150

Figure 2: StepRow pattern for Equihash 150/5

k − (i− 1) segments left, which are the binary xor of the inputs sub-segments. Furthermore the
newly created step row got an index list that is the merging of the two input index list. Hereby
the order of indexes of the input lists are preserved. The list of the 2nd input will be places after
the list of the first input if and only if the lowest most index in the first list is lower then in the
2nd. Note that by iterative application it is always guarantied that the lowest index that gives
a step row is placed in the first position of its index list.

Figure 3 illustrates the combination of two step rows in round 2.

Index List Hash Segments

A

B

=
⊕ ⊕ ⊕

A0 < B0 ?
A cat B : B cat A

Figure 3: StepRow combination in round 2 of Equihash 150/5.

The following theorem can be used to estimate the number of outputs of one round giving the
number of input segments.

Theorem. Let s1, . . . , sl be randomly chosen set of bit string of length z.

Then the expected number of pairs # {(i, j) | i < j and si = sj} is about l2

2·2z .

Proof. The total number of pairs (i, j) || i < j is about l·(l−1)
2 . We note that si = si ↔ si⊕sj =

0. Since si ⊕ sj randomly takes one of 2z values about l·(l−1)
2·2z ≈ l2

2·2z of the pairs satisfy the
condition.

In the concrete situation we have 2m+1 step rows generated from Blake2b input. These are
matched on m bits, so the first sub-segment of each hash row is a member of a set of size 2m.
Therefore in the first round the output is expected to be(

2m+1
)2

2 · 2m
= 22m+2−m−1 = 2m+1

step rows with remaining n − m bits. We see that m was chosen in a way that the expected
number of round 1 outputs equals the number of input step rows.

Iteratively we can conclude that we also expect to have 2m+1 step rows after the k − 1 th
round. In the last round we then need to match on 2m instead of m bits. Therefore the expected
number of outputs of the last round is(

2m+1
)2

2 · 22m
= 22m+2−2m−1 = 2.

Here we see an substantial difference between a classical hashing algorithm and the Equihash
PoW puzzle. A classical hashing algorithm would produce a fixed number of results in each

3

iteration, while for Equihash we only have the expected number of two solutions per iteration,
which is thus not guarantied. It may as well be that an Equihash instance has no solution as
that the miner is lucky and finds more then expected.

A central aspect of the estimates in the theorem is the randomness in the pair creation. This
is jeopardized in case that one step row is created twice over different pathes, because then one
will gain a completely zero step row in the next round. The following example illustrates how
such an element can be created in at least 3 rounds. We see that the condition that gives raise to
a full zero step row are in fact common enough to jeopardize the equal distributed randomness
assumption of the theorem.

Example. Consider the situation where at least four step rows with index sets A,B,C,D will be
bucketed into the same bucket, i.e. their next m bits wide segment equals. Without restricting
generality let this be in round 1.

Then the round code will create all combinations of this step rows, which have index sets equal
to AB, AC, AD, BC, BD and CD without consider the ordering.

If now any two of this 6 elements match on the next m bits as well we run in danger of
degenerated solutions. Let AB and CD be this two elements, then we know that the xor of the
round 1 and round 2 matchbit is zero given this indexes. But because of the elements coming
from the same round 1 iteration we can conclude that AC and BD as well as AD and BC also
will be combined in round 2 all giving raise to ABCD in the output of round 2. So in round 3
we will create multiple elements where all further match bits are completely zero.

The condition is not so rare that it can be ignored. Therefore from round 3 onward all miners
implement a check if an output step row is already completely zero. This also rules out the cases
where e.g. AB and AC will be matched. It can be observed that the test if a step row already
equals zero - which almost exclusively happens when it is composed of duplicate elements in its
index tree - is more and more important for higher round numbers. This is likely due to the
number of index tree elements doubling with every round.

1.3 Resource Consumption of Equihash Mining

As can be seen in the previous section the main influence on the memory consumption of the
algorithm is the number of step rows that act as in and output of the matching rounds. We must
note that the index tree appears to be of increasing size by doubling the number of entries in
each round, but a common optimization is to store it separately from the matching hashes and
only store references to the previous tree layers in later rounds. This way even in later rounds
for each step row only the indexes of its two ancestors get stored.

As a consequence we can estimate that the memory consumption is in the complexity class
O
(
(k + n) · 2m+1

)
. The following table lists the memory consumption of the Equihash imple-

mentations that were used as crypto-currency PoW.

n 96 200 210 144 192 125 150
k 5 9 9 5 7 4 5
Coin a MinexCoin ZCash AION BitcoinZ Zero ZelCash BEAM
m 16 20 21 24 24 25 25
Step Rows 217 221 222 225 225 226 226

Memory Use b ≈ 7 ≈ 200 ≈ 600 ≈ 1500 ≈ 2800 ≈ 3000 ≈ 3200

Table 1: Examples for Equihash instances

aFirst appearance of the Equihash parameters as primary PoW
bIn MBytes per instance for current GPU efficient implementations

The time consumption of Equihash mining naturally depends on the number of step rows as
well as the number of rounds. The exact timings of each round may in practice vary between

4

mining software, hardware vendors and last but not least from round to round, because the
step rows decrease in size in later rounds. For the Equihash instances with 3 step rows per
Blake2b output, e.g. 144/5 and 150/5 we observed that the duration of the Blake2b phase of the
algorithm approximately equals the duration of the first two rounds by using the mining software
lolMiner. As a consequence the timing of the Blake2b phase is approximately 20% of the total
execution time of this algorithms with total 5 rounds. This is because the last round requires to
write much less elements compared to any previous round and thus is less time consuming.

With respect to energy consumption the rounds are less balanced. The matching rounds are
dominated by xor operations and a bucket sort to prepare the input of the next round. This is
computationally very lightweight and overall dominated by the duration of fetching and writing
the elements to be combined. On the other hand the Blake2b filling of the step rows is very
computational intensive. As a consequence during the execution the differences between average
and peak consumption is rather high.

1.4 Equihash on Special Purpose Hardware

Current ASIC implementations of the Equihash 200/9 algorithm make use of large amounts of
on chip memory offering a low latency and high memory bandwidth. For example the Bitmain Z9
Mini [2] features 144 Mbyte of on Chip memory which is close to the theoretic minimal memory
for performing the algorithm on a CPU. Given the performance of the ASIC the used bandwidth
exceeds 5 TBytes per second.

In contrast an efficient GPU implementation will usually use a larger memory footprint because
the off chip memory controllers benefit from read and write access that is at least 32bit, better
128 bit aligned. Off chip memory has a bandwidth ranging of about 256 Gbyte/s on medium
range GPUs to trice the value on high end GPUs equipped with HBM2 memory.

Beside the advantages of high amount of on chip memory and better packed access patters an
ASIC as well as an FPGA can trade time spend for parallelizeable compute operations by chip
space and power consumption by assigning more circuits to the task. For Equihash the fraction
offering most potential for this trade is the Blake2b algorithm.

A massively increased performance of the Blake2b algorithm may be beneficial to trade com-
pute power against bandwidth like follows. In the first rounds of the Equihash matching phases
less bits then required for performing the full algorithm can be stored and loaded. As soon as
the abandoned bits get required for continuing with the algorithm the chip can recover them by
computing the hashes again from the indexes carried to this round.

This approach is in particular efficient in the early rounds when the bandwidth required to
transfer the indexes is low compared with the transfer of the original workload bits. Also in
this early rounds less different Blake2b passes have to be used to recover the concrete bits. For
GPUs this approach is not an option, because adding Blake2b computations increases duration
instead of space of the algorithm. Also this operations consume too much time to be hidden
when performing memory operations and they would increase power consumption as well.

1.5 Applicability towards Equihash 150/5

In the previous section we defined three potential benefits of ASICs compared to GPUs that
are large on chip memory areas, a better packing and coalescing of off-chip memory operations
and time-space algorithm trade-off.

Regarding the first issue we have strong confidence that a specialized chip for Equihash 150/5
will not take this exact approach due to its increased memory footprint. When completely
computed the output of the first round is (26 + 150) · 226 bits and thus approx 1.4 Gbytes. We
claim that with growing index tables of matched elements this is a sharp lower bound. This even

5

applies when using the trick described in the time memory trade-off part of the previous section,
because even the indexes written in the first 4 rounds compressed to 36 bits per matched element
plus the required remaining bits for performing the final matching round requires at least this
space.

In practice we even can estimate that the real memory consumption of an efficient implemen-
tation is at least twice the size, similar to the ZCash parameters.

Therefore a single chip ASIC holding enough memory to perform all operations at Tbytes per
second bandwidth range would be of 10 to 20x the size of the chip to perform ZCashs Equihash
200/9 algorithm on the same manufacturing process. This would increase the cost for producing
the chip dramatically, because on the same production processes a higher yield can be expected
and also larger chips are more costly.

Of cause this approach may and will get feasible in the future with advanced production meth-
ods and new technologies regarding fast on chip memory or staking chips with height bandwidth.
Never the less the mentioned amount of memory is high enough that the time to market of such
new inventions will be longer then our planned PoW review and adjustment period.

As of summer 2019, the PoW mining ASICs with the largest on chip memory are the Obelisk
GRN1 [5] and the Innosilicon G32-500 [4], which are both designed for mining Cuckatoo-31+
and are supposed to be available in 4th quarter 2019. Although the specs are not fully public it
is known these devices offer 512 MByte on chip scratch memory at a 16 nm structure and belong
to the largest chips that can be created at this structure process. We conclude that even with
the smaller 7nm manufacturing process the approximately 2GByte lower bound of an efficient
Equihash 125/4 implementation are out of reach.

The second benefit is of architectural nature. ASICs as well as FPGAs are able to perform
memory operations that use bit length that are not a multiple of 32 more efficiently. Also adding
more circuits in the implementation to ensure a better memory coalescing when using external
memory chips is exclusive to these chips, while a GPU can improve its memory access patterns
only by using software solutions.

We therefore believe this benefit can not be mitigated directly by an algorithm change unless
changing the parameters in a way that most memory operations are forced to be in ideal range
for GPUs. This is out of scope for Equihash with nowadays capacities.

Anyways we claim that the total effect of this benefit is limited by the capacities of the external
memory controller. For the already well tuned Equihash 144/5 parameters it is known that a
single run requires approximately 5 Gbytes of memory bandwidth in total. Each run will produce
2 solutions on average. Modern implementations can run up to 60 solutions per second on an
unmodified Nvidia GTX 1080. Therefore on this cards about 150 Gbytes/s of the total available
352 Gbyte/s are effectively used. So a specialized chip equipped with the same memory but more
efficient memory access patterns may have a gain limited to a factor of about 2.5 if the algorithm
behind is forced to write the same data.

This enforcement aligns with the potential space to memory and bandwidth trade-off discussed
before. The BEAM project proposes an algorithm change that makes the trade-off more costly
in terms of space requirement and power consumption of the resulting chip.

Note that specialized devices that are programmable as GPUs but are reduced to and spe-
cialized for the required operations to mine crypt-currencies and offer additional optimizations
for memory access still may be able to perform the algorithm 2-3x faster then a GPU equipped
with the same memory and that at a potentially lower energy consumption. On the long term
preventing such devices from mining the algorithm is not feasible. At the time of writing no such
designs are publicly available nor is there a concrete announcement of such, so we assume that
the desired head start for GPU mining BEAM is given.

6

2 BeamHash II & EquihashR Family of PoW

2.1 BeamHash I Data Path Change

By the nature of the Equihash 150/5 algorithm it has a blocking rate of 3 in its Blake2b
phase. This is that if the original algorithm is modified in a way that in later rounds the Blake2b
algorithm has to be performed again, for each step row we require 3x the computation amount
of the initial calculation, because in the first round 3 hash strings of 150 bit length are generated
in one computation. This also applies to the verification of an Equihash 150/5 solution, but is
no issue for the verification, because the total number of Blake2b runs to verify one solution is

32 while the average number of runs for generating one solution exceeds 11184810 ≈ 1
2
226

3 .

In order to cover the mentioned time memory trade of given by allowing more computations
we propose to increase this blocking factor. This will improve the original scope of Equihash to
achieve an algorithm binding and so increase the resistance against diverging approaches.

Algorithm. Let B(l) be the 512 bit string corresponding to the Blake2b hash for input index l
and let B(l)j be the j-th 32 bit component interpreted as 32 bit integer. Then let B′(l) be the 512
bit string computed like follows:

c← 16 · ⌊ l
16⌋

B′(l)← 0
while c ≤ l do

B′(l)j ← B′(l)j +B(c)j for all 0 ≤ j < 16
c← c+ 1

end while

For Beam Hash I - which is based on Equihash 150/5 this data-path change increases the
blocking factor from 3 to a value between 3 and 45 depending on the exact index of the step row.
In order to compute the modified hash string B′ it may be required to know all 15 other hashes
in the same group of 16 hash elements. On a GPU this can be cheaply achieved by using the
local memory on the device in the initial computation phase. Also on modern GPUs neighbored
threads with index only varying on the lowest four bits run in lock steps, so the sharing over the
local memory does not introduce new synchronization barriers.

Therefore for performing the algorithm the intended way the slow down by the extra com-
putation of the sums will be negligible. On the other hand when it is intended to run Blake2b
later again to recover bits from known indexes this is up to 16 times more costly then before and
overall up to 48 times so costly then in the initial round with an average extra cost factor of 24.

By this approach we aim towards forcing the algorithm to follow the same algorithm im-
plementation as done on GPUs or else to use more chip-space and drastically increased power
consumption, because performing the Blake2b algorithm is the most power consuming component
of Equihash.

Note that also the verification of solutions get more costly by an average factor of eight. But
since only few solutions needs to be verified and due to the still high asymmetry of generation
effort compared to verification effort the drawback is acceptable. Overall with this modification
the verification of an Equihash 150/5 solution can be done at lower average cost as the verification
of an Equihash 200/9 solution while the worst case costs are equal.

2.2 EquihashR Family Definition

We introduce an additional parameter r to the Equihash prove of work scheme that changes
the behavior of the hash generation and the step row matching. This parameter is used to define
the new EquihashR family of PoW that should have reduced computation costs while offer a
higher algorithm binding and thus resistance against diverging approaches.

7

Definition. Given integer parameters n,k and r.

Then we define the EquihashR<n,k,r> proof of work scheme to equal Equihash<n,k> with the
following modifications

(a) The change in the hash calculation described in section 2.1 is applied to the hash calculation.

(b) Instead of 2m+1 step rows we create 2m+1−r ones in the Blake2b phase of the algorithm.
The generated step rows equal those in the original algorithm, but we restrict to the first
indexes until the upper cap is reached.

(c) The first 2 · r bits of each n bit step row are reset to 0.

The rest of the algorithm is kept as for the original Equihash, so as a conclusion to (c) the first
round only matches m− 2r bits.

The parameter r reduces the amount of computation required to fill the array of hash val-
ues, because only 1

2r of the original step rows are calculated. Therefore the compute intensive
component of the algorithm is reduced significantly.

In round 1 the rather low number of hashes is matched on only N − 2r bits. As a consequence
following the theorem in section 1.2 the expected number of outputs of round 1 is

22(m+1−r)

2 · 2m−2r
= 2m+1.

Therefore the expected number of output of round 1 is the same as for the original Equihash
algorithm. Also the memory requirement of the algorithm is unchanged, except for a lower size
index tree of round 0. Our scope for introducing r is to reduce the dependency of the PoW
scheme on the computational power for the Blake2b generation. The idea is that existing GPU
miners profit from a lower power use while one of the domains where specialized hardware has
an edge over GPUs - computational heavy tasks - gets less impact on the solution calculation.

As a drawback to the original algorithm for each index the number of round 1 step rows
incorporating the index increases from 2 to 2 · 2r on average. Therefore the parameter r should
be used moderately in order not to jeopardize the randomness assumption of the theorem in
section 1.2.

2.3 BeamHash II

For the scheduled Beam hard fork we picked the EquihashR parameters n = 150, k = 5 and
r = 3, i.e. a factor of 8 reduction in the Blake2b component. Figure 4 illustrates the modified
step row pattern for BeamHash II. Here the shortened step row that will be matched in round 1
is colored in orange.

Bit 6 25 50 75 100 150

Figure 4: StepRow pattern for r=3 (BeamHashII)

All other aspects of the algorithm will remain unchanged. Especially this is valid for the size
of the solution size and thus the stratum protocol of the Beam currency. Note that in theory
the number of bits of a solution would reduce from 32 · 26 bits to 32 · 23 bits. We consciously
discarded the reduction for the implementation in the Beam cryptocurrency in order to ease the
implementation overhead for miner software developers and pools and to reduce a potential error
source.

8

2.4 Empirical Analysis

In order to evaluate the parameter r we started a series of computations based on BeamHash
I, i.e. EquihashR 150/5/0, where we tested a wider range of values for r. For each tested value of
r we checked at least 10′000 nonces to gain a decent sample size. Note that we did not generate
exactly 226−r step rows. Instead the number was slightly lowered in order to make the number of
Blake2b calculations dividable by 256. This had some advantages in our GPU implementation.

The following table gives the average number of step rows left after each round as well as the
standard deviation and the average number of solutions per iteration for different values of r.

Blake Round Round 1 Round 2 Round 3 Round 4 Solutions

BeamHash I
Average 67’108’608 67’108’440.8 67’108’161.7 67’107’431.0 67’106’132.9 1.989

Std. Deviation - 8’080.06 18’101.75 36’703.02 73’731.33 -

r=1
Average 33’553920 67’108’892.9 67105068.0 67101323.7 67093913.1 1.971

Std. Deviation - 8’232.58 18’420.57 37’846.57 76’058.62 -

r=2
Average 16’776’960 67’106’527.9 67’104’287.7 67’099’851.3 67’090’942.7 2.026

Std. Deviation - 8’239.37 18’586.03 38’114.90 76’684.49 -

BeamHash II
(r=3)

Average 8’388’096 67’098’069.8 67’087’248.5 67’065’681.5 67’022’639.6 2.015
Std. Deviation - 8’195.76 18’288.52 37’405.58 75’143.71 -

r=8
Average 512’776 66’977’746.5 66’846’936.1 66’584’134.8 66’063’507.7 1.924

Std. Deviation - 8’072.35 17’916.2 36’524.42 73’180.23 -

Table 2: Average number of generated step rows for EquihashR 150/5/r and selected values
of r, 10’000 simulations each

We observe that for the selected range of r the statistical properties are very stable. For
higher values we observe that the mentioned filter that tries to detect step rows with duplicate
indexes is more active. Never the less from r = 9 and higher we observed that the number of
candidates that pass round 5 but then get discarded due to duplicate indexes is exponentially
increasing. At the time writing it is not yet clarified if this effect is due to a lack of generality in
our implementation or due to the effects of the index tree, which has a highly increased number
of step rows including a fixed index after round 1. Deeper investigations will be required to cover
these cases and analyze the behavior of EquihashR for high r.

Regarding the energy consumption we did a test with a Nvidia GTX 1080 founders edition and
an AMD Radeon R7. Both GPUs were tested with their stock clocks and the OpenCL reference
miner. Note that this is miner is generally a bit better optimized for AMD devices. The following
table gives the ASIC power consumption and hash rate for both algorithms supported by the
miner.

BeamHash BeamHash II
Perf Watts Perf Watts

AMD Radeon 7 17.5 sol/s 206 W 23.6 sol/s 175 W
Nvidia GTX 1080 8.5 sol/s 132 W 11.3 sol/s 118 W

Table 3: Performance and power consumption of the reference implementation on selected
hardware.

We observe that the new parameter set yields a lower energy use by 10 to 20% although the
miner is able to produce about 30% more solutions per second. Also this behavior is consistent
between the two GPU vendors. We thus have strong evidence that BeamHash II matches our
design scope.

References

[1] BEAM — Mimblewimble-based Privacy Coin, https://beam.mw

9

[2] Bitmain Antminer Z9 Mini, bitmain.com

[3] Biryukov, Alex; Khovratovich, Dmitry (2017). ”Equihash: Asymmetric
Proof-of-Work Based on the Generalized Birthday Problem: Open Review”,
https://ledger.pitt.edu/ojs/index.php/ledger/article/view/48

[4] INNOSILICON G32, https://www.innosilicon.com/html/grin-miner

[5] OBELISK GRN1, https://obelisk.tech/products/grn1.html

[6] Wagner, David A Generalized Birthday Problem. Lecture Notes in Computer Science 2442
(2002) 288303

10

