
Lelantus-MW
The hybrid symbiosis



Brief overview of MW

• UTXO as Pedersen commitment
•

• Transactions:
• No scripts, no transactions in the “classical” sense
• Balance-to-zero principle
• Merged non-interactively!

• Cut-through
• Block is one big transaction
• The whole blockchain history is one huge transaction
• Spent outputs are removed



not really…

• Great anonymity out-of-the-box
• All transactions are confidential
• Values are blinded (concealed)
• No addresses, accounts, user tokens or etc.
• Transaction graph is obfuscated

• Great scalability
• Spent outputs are completely erased
• Only kernels remain (~100 bytes per tx)

What could be wrong with MW?

So far so good



Linkability

• The Achilles heel of MW!
• Cut-through doesn’t improve anonymity!
• Optimistically – up to ~1000 transactions

in a block are mixed
• But not all blocks are big!

• Transaction broadcast is non-trivial
• Not good enough against “active” attacker



Possible “laundry” solutions

• Current solution:
• Modified Dandelion with transaction join during stem phase
• Decoy inputs/outputs (UTXOs with zero value)

• Other poor man’s solutions:
• Coinjoin
• Trusted payment hubs

• Drastic solutions:
• zk-SNARKs, zk-STARKs
• Bulletproofs (for arbitrary circuit)



Lelantus

• Work of Aram Jivanyan, Zcoin's cryptographer
• Disclaimer: Our design and implementation are based 

on the publicly-available Lelantus scientific paper. All 
our code was developed from scratch based on this 
paper alone.

• Natural ally:
• Designed as an add-on (laundry) to any protocol
• Same cryptographic assumptions (DLP, no trusted setup)
• Similar constructs: Pedersen commitments, 

rangeproofs, vector commitments
• Based on the One-out-of-many Sigma-protocol by Jens 

Groth



Brief overview of Lelantus

• Lelantus UTXO
•
• – serial number, derived from pubkey . 

• Spend transaction
• is revealed, and the whole transaction is signed by appropriate secret key
• is subtracted (methodically) from the commitments in the pool
• Modified Sigma-protocol in terms of generators.

• The net value extracted from the shielded pool is revealed
• Separate proof proves its correctness
• For this original Sigma-protocol is significantly modified



Lelantus-MW

• Why not just use Lelantus as indented for Zcoin?
• Values should not be revealed
• Keep cut-through for the MW part

• Our (Beam) modified version
• Reveal Pedersen commitments instead of values
• Reveal commitment for each individual spent UTXO

• Would be a bad idea if values were revealed
• Separate spend proof can be omitted!

• Keep balance-to-zero principle
• Keep MW-style transactions!

• MW/Lelantus inputs/outputs can come in any combination



Lelantus-MW primitives

• Input
• Pedersen commitment
• MW: must be in the current UTXO set
• Lelantus: Spend proof is attached

• Output
• Pedersen commitment
• MW: Bulletproof (rangeproof)
• Lelantus: double-blinded bulletproof

• Kernel
• Pedersen commitment
• MW: Schnorr’s signature
• Lelantus: generalized Schnorr’s signature (in terms of generators)



Spend proof

• Pedersen commitment
• ᇱ

• Value 𝑣 is the same as of the spent UTXO
• Blinding factor αᇱ different

• Generalized Schnorr’s signature to prove the above
• – serial number, derived from the revealed pubkey
• is subtracted (methodically) from the commitments in the 

shielded pool
• Original Sigma-protocol proves the knowledge of an element in the pool, in 

terms of generator only.
• The witness data is the blinding factor difference ᇱ

• Separate balance proof is not needed!



Lelantus-MW implications
• Pros:

• Linkability break!
• One-side payments

• Cons
• Obviously no cut-through for shielded pool
• Verification time is dramatically higher

• Nearly linear in anonymity set size
• 1 sec for anonymity set of 65536 elements
• But only 15 msec for each additional proof for the same anonymity set
• Easily parallelized
• Precomputations are effective, but dramatically inflate the storage size

• Most of transactions should remain in MW
• Lelantus should be a “premium feature”
• Consensus rules must restrict the overall anonymity set referenced by a block and limit the 

number of spend proofs.
• This should create a fee market



Conclusions

• So, problem solved? Not completely!
• Dust attack is a threat
• Proper strategy must separate “clean” UTXOs from others

• Compared to Zcash
• Great technology, but NOT immune either!
• Unlimited anonymity set is a big advantage, but:

• Probability distribution is not uniform!
• Recent outputs are more likely to be spent
• Only hundreds of shielded outputs per day

• Metadata leakage (correlated values, number of JoinSplits, etc.)
• Breaking linkability is HARD!
• ANY induced (stereotypic) behavior in an attack target!

• Theoretically with enough experiments the attacker can reach arbitrary precision
• The goal is to make such attacks infeasible in practice



Thank you!


